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Abstract

Functional metaprogramming consists of the study of functional
languages and individual functional programs. A number of areas
of functional metaprogramming have been investigated.

A design is presented for a functional program development sys-
tem, which is intuitive for functional programmers and which may
be easily customized and extended. This design is extended to in-
corporate an assistant for the proof of program properties.

A proof system is introducted, providing flexible mechanisms
within which proofs may be constructed in a fashion designed to
make proof accessible and attractive to functional programmers.
The proof is constructed in a fashion similar to that used for ordi-
nary programs. The presentation of the proof rules resembles func-
tion applications, and the statements are written in the underlying
functional language and interpreted appropriately.

In order to be able to make precise statements of program prop-
erties, extensions are provided to the standard types system to en-
able subtypes to be easily represented. Additionally, an algorithm
is presented which enables suitably annotated defining equations of
functions to be treated as totally independent equations.
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Chapter 1

Introduction

Functional Metaprogramming consists of the study of functional languages and
the manipulation and proof of individual functional programs. I have investi-
gated a number of areas in Functional Metaprogramming with the intent of
constructing the design for an environment in which to develop functional pro-
grams. An important part of this design is a tool to allow entry of statements
about a program under development, and to assist in proving these statements.

Within this environment it should be possible to take the initial design for
a functional program, and to derive properties from it. The design for the
program may then be implemented using a suitable functional language. This
implementation may then be compiled, executed and debugged within the en-
vironment. The derived properties may be expressed as boolean expressions
within the functional language, and the proof tool used to deduce that these ex-
pressions will be true under all circumstances. The environment should provide
additional facilities, for example, to manage program development.

Proof is not easy for most people, and this environment assumes that proof
will be carried out by functional programmers. They are expected to be familiar
with the programs they write, and to be able to derive suitable properties for
proof, but not necessarily to be able to construct proofs of these by hand.
This restricts the choice of available proof methods. The proof system must be
rigorous, but it must be intuitive to functional programmers. The proof assistant
must at least handle the details of the proof, and prevent the programmer from
making fundamental mistakes. If it can actively help in developing the proofs,
for example, by suggesting possible ways in which the proof may be advanced,
the process of developing proofs of properties may become substantially quicker.

An important consideration with this environment is the user interface. The
environment consists of a number of disparate tools. These must interface
cleanly with each other and with the user if the environment is to be used
effectively. While the design for the overt user interface is fairly standard, its
internal design introduces a number of new ideas.

This thesis presents a design for the underlying environment. The environ-
ment server or coordinator is presented in some detail, as is the method in which
it is connected to the other tools constituting the environment. A type system
which gives much finer graining of values than is available with the standard type
inference algorithm is presented, along with means of deducing automatically
the range of values over which the individual equations making up a function
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8 CHAPTER 1. INTRODUCTION

apply. A proof system for use by programmers as part of the environment is
presented, as is an assistant which forms one of the tools of the environment.
No other tools are presented in more than outline, so that it may be seen how
they fit into the environment.

The remainder of this chapter provides a brief introduction to many of the
core ideas and terms included in this thesis.

1.1 Functional Programming

Functional Programming differs substantially from more conventional, proce-
dural, programming. A functional program defines its effects entirely in terms of
a single expression which is to be evaluated. Although the form of the expression
changes during evaluation the current form at any point is always equivalent to
the original in the sense that it has the same effect. The effect of the expression
is called the value of the expression. No order of evaluation is made explicit
within the program. Instead a set of evaluation rules are repeatedly applied to
the expression to be evaluated and its subexpressions until the program termi-
nates. This occurs when the form of the expression can no longer be changed
by applying the functions defined in the program.

A function in a functional language defines possible replacements for ex-
pressions. A defining equation for a function consists of two parts: a left
hand and right hand side. If any portion of the expression to be evaluated
matches the left hand side of the equation, then this may be replaced by the
right hand side of the equation.

Functional languages may be divided into several classes. Pure functional
languages hold exactly to the description given above, in contrast to hybrid
functional languages, which augment the above with some procedural constructs
(for example, variable assignment). Strict functional languages require that
once evaluation has begun on a sub-expression it must continue until that sub-
expression has been fully evaluated, whereas non-strict or lazy functional
languages use a set of evaluation rules designed in such a way that a subex-
pression is never evaluated unless its value is required, and that evaluation on a
sub-expression only continues until the minimum necessary information about
it is obtained. Theoretically, any particular functional language may be any
combination of these two categories, but it is difficult for a language to be both
strict and pure.

1.2 Miranda

Miranda1 is a proprietary, pure, non-strict functional language. In addition to a
collection of built in functions and types, facilities are provided for defining new
functions and types, and collecting these together into modules, which are called
“scripts”. An environment for entering expressions to be evaluated interactively
is provided, which also provides access to an editor to create and modify scripts.
Expressions and definitions are entered using a simple syntax, and special syntax
is provided for common constructions, for example numbers and lists. A number

1Miranda is a trademark of Research Software Limited
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of advanced features (for example, modules and list comprehensions) are also
provided.

1.3 Haskell

A number of pure functional languages have been developed and are currently
available. These differ primarily in syntax, and Haskell is a language designed
to embody the consensus of ideas across these languages. The Haskell report
defines the Haskell language, and at least two implementations are being devel-
oped.

The idea of Haskell is to provide a uniform, non-proprietary language for
teaching and research. New ideas can be built into the basic structure of Haskell,
and the results presented in a fashion which is then more easily understood
across the research community.

However, the existing functional languages differ in a number of areas more
significant than the syntactic differences already mentioned. The means for pro-
viding advanced features, for example, program modules, differ widely amongst
languages. For these features Haskell provides innovative solutions, including
a form of arrays for constant time lookup, and a class system to augment the
types of the language.

1.4 Flair

Flair is a very simple, pure, non-strict, functional language. It is essentially a
subset of Haskell, removing all of the complex features. It has a simple block
structure, allows the definition of a single final expression together with func-
tion and type definitions. Function definitions are similar to Haskell. Scoping
is handled very simply. Special syntax is provided for numbers, characters,
and strings. The essence of Flair is that it can be easily comprehended and
manipulated, since there are very few special cases. A number of features are
included in Flair which are not in Haskell to support meta-programming. A
simple compiler for Flair is presented in the appendix.

The ideas presented here are all presented in terms of Flair, although they
could be equally applied to any other pure, non-strict functional language (such
as Miranda or Haskell) provided that any algorithms or techniques demonstrated
here are extended to cover all the features of the language, and provided that
the language is extended to support any extra features required.

1.5 Types and Classes

Any expression in a functional language has a certain value, which can be de-
termined by evaluation. Different values with similar properties can be grouped
together. Most functional languages permit the grouping of values into types.
The means by which this may be accomplished, and the properties of the re-
sulting types varies from language to language. In Miranda and Haskell values
belong to exactly one type. In Flair, an extended system of types allows the in-
tersection and union of types to produce new types. A value may belong to any



10 CHAPTER 1. INTRODUCTION

number of types (or none of them). This allows greater expressiveness, which
is particularly important in the proof system.

Haskell further groups types together into classes. These classes share prop-
erties across all member types. For example all members of the Eq class have an
equality operation defined on them. These classes are not supported in Flair,
although an alternative formulation for a class-style idea is presented, using an
extension to the standard idea of polymorphism.

1.6 The Toolbench

In addition to an underlying functional language, a suite of tools is required,
which form an environment in which programs may be produced and executed.
The most important of these tools are an editor with which to create programs,
a functional language compiler to produce executable versions of programs, and
some means (for example an interpreter) for executing the resulting programs.
The editor is the centre of this activity, since it is necessary to use the editor to
produce the original program, and subsequently to modify it (either to remove
initial errors or to produce a different behaviour).

A wide variety of tools may be desired beyond this however. For example,
specialised tools to produce documentation, to maintain source code archives,
to assist in debugging programs, and for meta-programming. It is therefore
important that a toolbench be developed, providing the essential tools, but to
which any new tools can be added without excessive difficulty. The toolbench
should provide standard means of providing services (such as the user interface)
and the individual tools should interact with the toolbench in a consistent and
well-defined manner.

1.7 Environment Design

The result of my investigations is the design for an environment for workstations
such as the Sun/3 and Sun/4 families, which has a single, consistent, config-
urable user interface. Within this environment a programmer may develop a
functional program, entering, compiling and executing it under the control of an
editor. The design of the environment makes it easy to extend the environment
by adding additional tools. The design also provides for a tool which enables
the programmer to state and interactively prove properties about programs.

The only interface between the programmer and the environment is through
a coordinator. Multiple on-screen windows are associated with the current activ-
ities, such as editing programs or proving properties. Communications between
the tools and the coordinator provide the only interface between the tools and
the programmer. There are two basic types of window used for interaction be-
tween the programmer and the environment: browsers allow a selection to be
made, whereas edit windows allow the creation, modification, and observation
of text files.

The coordinator provides the programmer with access to all the tools in the
environment, and separate tools in the environment communicate through the
coordinator. This arrangement is illustrated in Figure 1.1. The coordinator’s
primary role is to organise the programmer’s use of these tools. Each of the
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Figure 1.1: Arrangement of tools within the environment

tools has one precise task to fulfill.
The compiler accepts programs (or parts of programs) written in the un-

derlying functional language and generates executable versions. This code is
common across the environment, and may be executed directly by the executor,
or internally by the editor and proof assistant. Errors found during the compi-
lation are reported to the programmer through special windows opened by the
coordinator. These may then be corrected and the modified program submitted
for compilation. Ideally, an incremental compiler would be used, which enables
a much faster recompilation time when errors are found.

The executor accepts executable code (which will have been generated by
the compiler at some point) and executes it. Such code may take advantage of
the connection with the coordinator to provide a window-based user interface.
Otherwise, a standard editor window is opened to conduct an interactive session.
The debugger provides an opportunity to execute programs in a controlled
environment, allowing the program to examine the results of various expressions,
and to control the evaluation process. No description of the debugger or how
it might work is presented here, although a brief description of how a debugger
might be used in the environment, together with references on previous work
on functional language debugging is given in Chapter 10.

The proof assistant supports the statement and proof of program proper-
ties. It accepts portions of code and proof from the coordinator in their standard
form and stores these internally. It then permits the programmer to review these
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in a variety of ways which are more intuitive than the standard form. A proof,
once constructed, may be automatically checked to ensure that the property
has indeed been proved, and it is possible to store results, once proved, as a
foundation for constructing and checking other proofs. While a proof is under
construction, the assistant may help by suggesting possible ways in which the
proof may proceed, for example, by suggesting a rule or expression which seems
most applicable at the current stage.

The library manager provides an interface between the coordinator (and
hence the rest of the system) and the filestore. In the simplest case (which
is assumed here) this simply means that all the reading and writing of files is
done centrally by one tool. In a more advanced case, the manager should sup-
port multiple users, with file-locking and update control, a revision or version
control system, directory facilities (for example, accessing files by the functions
they provide), and a means to combine files of various types (for example doc-
umentation along with code).

The tools described above provide all the facilities needed for a good de-
velopment system. For a deliverable system for ordinary users, an extended
executor tool is required to provide an easy interface to the programs available
within the environment. This tool would provide an interface to the operating
system analogous within this environment to a conventional operating system
shell although the facilities provided, and particularly the interface design might
be substantially different. Most of such a tool already exists within the system
already described: the library manager provides the appropriate access to both
programs and the filestore; the coordinator provides the necessary user interface
components. This tool could also be of use to developers producing programs, as
a replacement for the standard operating system shell. No such tool is described
here.

A single, standard form of communication exists between the various tools.
Each tool communicates directly only with the coordinator; communication
with other tools is indirect, via the coordinator. Within the coordinator a
functional language interpreter coordinates the environment activities through a
requests/responses style input/output mechanism. This is translated by another
part of the coordinator, and messages to other tools are encoded as operating
system-specific messages (for example, over streams or as remote procedure
calls). These messages are then accepted and decoded by the various tools
as required, which generate appropriate response messages which are in turn
encoded and decoded across the environment.

A tool may respond to a request with another request — for example, a
request to compile a program may produce a request for access to the source of
an included file: this will elicit a response from the coordinator, and eventually
a response from the compiler to the coordinator’s original request will be forth-
coming. All user input is decoded by part of the coordinator, and passed to the
functional interpreter directly.

The system may be easily extended by adding new tools to provide new
services. The coordinator is customised using a functional programming lan-
guage. The programs customizing the coordinator must be extended or altered
to provide an interface to the new tool. An example of this is presented when
the proof assistant is added to the system in Chapter 8.
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1.8 Proof

When developing programs, the programmer is expected to prove that these
programs meet certain requirements — in general, that they conform to a user
specification. These properties are expressed as combinations of functions within
the system, and will be boolean valued. The programmer must show that these
properties will always hold, and it is important that such proofs are completely
formal. In order for this to be practical, the programmer must be given auto-
mated assistance. This is provided by a tool known as a proof assistant, which is
responsible for rigorously checking the proofs provided by the programmer, and
assisting in the construction of the proofs. As a further aid to the programmer
constructing the proofs, it is important that the basis of the proof system be
intuitive.

Several styles of proof have been investigated in the course of this work, and
an overview of these styles is presented. One style has been developed into a
completely detailed, rigorous proof language, and the issues of how proofs may
be automatically checked in this style have been addressed. Possible means
of machine assistance in the construction of the proof are outlined, although
detailed mechanisms for assistance in proof construction are outside the scope
of this work.

The proof assistant is, of course, integrated into the environment described
in the previous section, and this provides an extensible proof assistant: that
is, the proof assistant may be programmed in a relatively simple manner by
the programmer to provide assistance in any way that is required. This enables
any programmer using this development system to customize the proof assistant
with any heuristics or algorithms which are found to be useful following previous
experience of developing proofs.

1.9 Layout

Chapter 2 provides detailed background on a functional language, its syntax,
features, and denotational semantics, while Chapter 3 provides background in-
formation on operational semantics, and implementation information for a func-
tional language.

Chapter 4 presents, in detail, a design for the extensible functional envi-
ronment described above, concentrating on the mechanisms for communicating
between the tools and a means of coordinating the various user activities.

Chapter 5 presents an extension to the type system which makes it more
suitable for meta-programming, supplying additional features to commonly ac-
cepted type systems, while still providing the standard features.

Chapter 6 discusses various styles of proof which could be used with func-
tional languages in an attempt to develop a style which is well suited to func-
tional programmers, and fits well with the design of the system.

Chapter 7 describes a proof system for use with functional languages. It
provides means for expressing properties within the functional language, and
then for proving that they are correct.

Chapter 8 shows how a proof assistant to support proofs as detailed in
Chapter 7 may be integrated into the environment of Chapter 4.
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Chapter 9 discusses the proof system in Chapter 7 and shows, by comparison
to classical or constructive logic, that proofs presented in this system are valid.



Chapter 2

Functional Languages

This research is directed towards the design of an integrated environment for
developing functional programs and proving properties of these programs. This
chapter discusses the functional language Flair in detail, ending with a discussion
of its formal semantics.

The functional language Flair is essentially a subset of Haskell, the emerg-
ing, non-proprietary standard for pure non-strict functional languages. Many
complex features, such as infix operators and constructors, list comprehensions,
and arrays are excluded from Flair. The type system is considerably extended,
in order to better express the type properties of programs, although this is not
discussed until Chapter 5. The type and class systems of Haskell are ignored
for the present.

A Flair program is logically divided into three sections. These may all coexist
within a single file, although generally they will be kept physically distinct. The
first section consists of standard data and function definitions, which define the
object program. The second section provides the extended type definitions
which may be required for proofs. The third section contains the proofs of
program properties. The statements of program properties, where used, may be
placed in either the first or third sections. A notional fourth section contains
meta-level definitions required for the proofs. This is kept totally separate from
all other parts of a Flair program.

2.1 Values and Patterns

Values are covered formally in a number of papers, for example [70]. Informally,
each data value is either a constant or is formed by combining one or more values
using a constructor. A constructor may be introduced into a Flair program, as
in Haskell, by defining a type which uses the constructor. A constant pattern
consists of the constructor written on its own. The type definition is introduced
by the keyword data followed by the name of the type being defined. The data
type zero, containing only the constructor Zero, apart from the non-terminating
value ⊥, might be defined:

data zero = Zero

15



16 CHAPTER 2. FUNCTIONAL LANGUAGES

Non-constant patterns, which describe sets of values, are written as a con-
structor followed by one or more type names. The number of type names is
called the arity of the constructor (by extension, constant constructors are said
to have arity zero). For example, the type list consists of the empty list,
represented by a constant constructor, Nil, and a pair, combined using the con-
structor Cons, of a first element and a list of remaining elements. Multiple
patterns can be used in the same type definition by separating the patterns with
a bar | indicating a union of the sets of values.

data list = Nil | Cons element list

Two restrictions are placed on any constructor introduced in this way: it
must be written with an initial upper case letter to distinguish it from other
syntactic objects; and it may not appear in more than one pattern.

In addition to defining the names of constructors and their arities, the above
declarations also define functions which allow values to be formed by combining
smaller values; restrictions upon which smaller values may be used in forming
such values; and the type to which the new value will belong.

In the above example, Nil defines a constructor function which takes no
arguments, and which produces a single value of type list; Cons defines a
function of two arguments: the first is required to be a value of type element,
while the second must be of type list: the result will be a value of type list.
The type list consists of all the values which may be defined in these ways,
together with partial and infinite lists, generated by the implicit inclusion of the
value ⊥ in the type.

A constant constructor directly represents a single value. A non-constant
constructor defines a pattern for a set of values. The value is constructed by
applying a constructor to its correct number of arguments, that is, equal to its
arity. These values correspond to ground terms in logic programming languages,
and the set of all values in all types is approximately equivalent to the Herbrand
Universe. The Herbrand Universe consists of all the ground terms which may be
formed by the application of any of the function symbols to a number of ground
terms corresponding to the arity of the function symbol. However, expositions
of the Herbrand Universe do not usually deal with the non-terminating value ⊥
or consider the types of the ground terms.

Polymorphic type variables may be used to define more general types. In-
stead of defining each type name used as an argument in the definition of a
pattern, a variable may be used, which is replaced by a “real” type name when
the type is used. For example, the type element in the above example may be
replaced by a polymorphic variable k, and the type list element may be used
in place of the original list.

data list k = Nil | Cons k (list k)
type listel == list element

Whenever an instance of this type is used, for example, in the definition of
listels, the desired type is substituted for k wherever it appears on the right
hand side of the definition of list. Any number of different instantiations of
the variable k may appear within a single functional program, each generating
a different, but nevertheless related, type definition.
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In addition to the simple patterns described above for defining types, con-
sisting of a constructor and zero or more typenames, patterns are also used in
a more general way in equations for defining functions. These consist of a con-
structor, together with arguments corresponding to the arity of the constructor,
each of which is either a free variable or a pattern. For example,

Cons x (Cons y r)

is a general pattern of type list, describing any list with at least two elements,
x and y, and the remaining list r. This is illustrated in Figure 2.1.

A value may be matched against a pattern. If the match is successful, then
the free variables in the pattern are instantiated to the corresponding parts of
the value. In order for the match to be successful, the pattern’s constructor must
be the same as the value’s, and, whenever a pattern appears as an argument
inside the pattern, it must match the corresponding argument in the value.

For example, the value Nil does not match the above pattern, since it has
a different constructor. The value Cons Zero Nil also fails to match, since the
second argument in the above pattern is a pattern, and the pattern Cons y r
does not match the value Nil. The value Cons Zero (Cons Zero Nil) does
match the above pattern, and gives rise to the instantiations x/Zero, y/Zero,
r/Nil. These matches are illustrated in Figure 2.2.

Two types which will be frequently used are nat and tree. These are defined
using the following data definitions.

data nat = Zero | Succ nat
data tree = Empty | Tree tree nat tree

2.2 Types as Sets of Values

Each type is defined as one or more simple patterns. A simple pattern is a
pattern consisting of just a single constructor applied to an appropriate number
of type arguments. Each simple pattern describes a (possibly empty) set of
values. Consequently each type represents a set of values, which is the union of
the sets described by the patterns.

The set of values described by a type is fairly easy to determine. It consists
of all the values which match one or more patterns in the type definition, and
whose arguments belong to the types specified in the patterns. The value ⊥,
representing the value of an expression which either does not terminate, or
results in an error, is included as a member of every type.

If types are viewed as sets of values, then sub-types, overlapping types, and
union types become easy to describe; representing them adequately is somewhat
more subtle. This is addressed in Chapter 5.

2.3 Functions and Expressions

Data values represent data objects in a functional language, and are the final
results of all computation. Types and patterns provide means to group these
values into sets. The process of computation may be described by the introduc-
tion of expressions and functions.
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Expressions are tree shaped objects similar to values. An expression consists
of either a constructor applied to zero or more arguments or a function applied to
zero or more arguments: each argument is an expression. It is not a requirement
that a function or constructor be applied to a specific number of argument
expressions, as constructors must in forming data values, although functions
and constructors still have arities — the number of arguments they expect to
be applied to. If applied to this number, the result will generally be a regular,
non-function value: for example, in Figure 2.3(a), + is applied to two arguments,
its arity, and the result is an integer value, 4. If applied to less arguments
than the arity the result is a function value with arity equal to the number of
arguments still required: Figure 2.3(b) shows the rep function, which takes two
arguments, just applied to its first, numeric, argument. The result is a function
of one argument which produces a list of three copies of this argument. It is
also possible for a function to be applied to more arguments than its arity: for
example, Figure 2.3(c) shows the id function, which has arity one, applied to
two arguments. In this case, the function is applied to the first arity arguments,
the result being a function which is to be applied to the remaining arguments.

Functions are defined using equations. The left hand side consists of the
function applied to general patterns and the right hand side consists of an
expression involving some or all of the free variables used in the patterns. Any
number of equations may be used to define a function, and it must always be
possible to identify which equation is intended for use with any given set of
argument values. Two methods may be used to determine which equation of a
definition is to be used: firstly, an equation may only be used if the patterns
on the left hand side of the definition match the values used as arguments to
the function application. Secondly, a guard may be used to determine if the
case applies, the guard being a boolean-valued expressing usually involving one
or more of the free variables in the patterns. Guards are provided in Haskell,
but not in Flair (instead, the programmer must use a function if, which takes
a boolean, and the two alternative values). In the simplest case, the patterns
are distinct, and no guards are used. Consequently, there is no combination of
values for which more than one equation applies. For example, a simple function
to reverse a list would have two equations. The first covers the case for an empty
list, while the second covers the case for non-empty lists.

reverse Nil = Nil
reverse (Cons e res) = append (reverse res) e

In more complex cases, more than one equation may appear to apply to a
given set of arguments. In Haskell, such problems are resolved by the order in
which the equations are written; alternatively, the cases may be dealt with sim-
plest first, that is, the case which matches the smallest set of values, and either
the equations must be distinct or there must be a simplest case to choose — if
not, the equations are deemed to be inconsistent. For example, in the following
definition of another simple list processing function, drop, the expression drop
0 Nil matches both of the first two left hand sides.

drop 0 es = es
drop k Nil = Nil
drop k (Cons e res) = drop (k-1) res
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In Haskell, the first equation is used. If the simplest case is being chosen,
these equivalences are deemed inconsistent, and a simplest case must be added:

drop 0 Nil = Nil

Note that if this is added as the first equation, it does not alter the actions
of Haskell in interpreting this definition.



Chapter 3

Interpretation of Functional
Languages

Functional languages, as described in the last chapter, may be compiled into
a sequential form, which may then be executed on any sequential computer.
The evaluation of functional programs is used as a model upon which proofs
are based in Chapters 6 and 7, and a suitable intermediate code, called G-
Code, is described in Section 3.1. G-Code was originated as a simple means
of representing sequentially executable functional programs by my supervisor,
Dr. Ian Holyer, based upon the Spineless, Tagless G-machine [63], and a lin-
earised version of their T-Code. A method for translating expressions from Flair
and compiling pattern matching into G-code is discussed in Section 3.2, which
contains some original work on an algorithm to separate overlapping cases in
defining equations.

3.1 Evaluation

Evaluation of functional programs may be viewed as the sequential execution
of a series of low-level instructions, provided that the functional program is
first translated into a suitable form. One such form is described here. It is
called G-code, because it is based on the G-machine approach to evaluation
of functional programs, particularly the Spineless, Tagless G-machine. G-code
consists of a few instructions, and essentially one addressing mode. It may
be subsequently translated into assembler for most microprocessors or RISC
processors, or may be interpreted by a relatively small C program. Such a
C program is given in Appendix E. The form of reduction described here is
tree reduction, although the method may be easily extended to cover graph
reduction.

3.1.1 The Evaluation Model

The process of evaluating a functional expression involves repeatedly rewriting
the expression in such a way as to reduce it to a normal form, which is a
value constructed as described in the previous chapter. Data for the functional
program is stored in a single memory space, comprising two portions: the heap

21
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is used to store structured data objects, such as expressions and values in a
random-access fashion, while the stack is used to store pointers into the heap
in a last-in, first-out fashion. Each expression may be represented as a tree, each
node consisting of a function applied to arguments as pictured in Figure 3.1.
This may be translated into a form suitable for storing in the heap/stack model
as shown in Figure 3.2. Code may be stored as a collection of blocks, as in
Figure 3.3. Evaluating a function application is performed by creating a new
heap cell representing the right hand side of an expression from the arguments
to the function presented on the left hand side. For example, consider a simple
definition of reverse for a non-empty list (pattern matching is addressed later).

reverse (Cons x l) = append (reverse l) x

When reverse is entered, one argument is on the stack, pointing to a heap
cell containing a Cons node of two arguments: the head and the tail of the
list. Both of these are possibly unevaluated expressions. The code for reverse
removes the pointer from the stack and generates a new heap cell containing a
suspension node with two pointers: the first points to the function reverse, while
the second is the pointer to the tail of the list. The pointer to this new cell,
together with the pointer to the head of the list, are then placed on the stack.
After rearranging the stack in this way, reverse transfers control of execution
to the function append.

The node to evaluate reverse l is called a suspension node, because evalua-
tion of that node is suspended until it is required. The first word of a suspension
node points to a code block to be executed, and the remaining words point to
variables free in the sub-expression. The only time that a suspension is evalu-
ated is when the head constructor needs to be determined for pattern matching.
When the suspension node is entered, the code pointed to by the first word is
executed, and this may retrieve and use the other pointers in the suspension
node as data. For reverse l, the code for the suspension simply recovers the
free variable, l, from the suspension node, pushes it onto the stack, and calls
reverse.

The stack is arranged in frames, each frame consisting of a continuation
address, and the variables stored by the caller for use by the code at the contin-
uation address. In this way, each frame on the stack resembles a suspension node
on the heap: it consists of a code pointer and some free variables. The differ-
ence is that the suspension nodes represent sub-expressions which are awaiting
evaluation; the stack frames represent super-expressions waiting for the evalua-
tion of sub-expressions to complete before continuing. At the top of the stack,
arguments to the function to be called are stored.

The heap grows continually as new nodes, representing new intermediate
expressions, are created. When old intermediate expressions are no longer re-
quired, the old heap nodes become inaccessible, but are not immediately reused.
The stack alternately grows and shrinks: when a sub-expression needs to be eval-
uated, an extra frame is placed on the stack, when that has finished, the frame
is removed from the stack. The evaluation of the sub-expression may, of course,
require the evaluation of other sub-expressions, so causing multiple levels of
stack to build up. The code segment is of a fixed size, totally determined at
compile time.

If the heap and stack fill up the available memory space, it is necessary to
reclaim unused space. There is never any unused space inside the stack (it is
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freed when the stack shrinks), but the heap may contain many dead nodes from
intermediate representations of expressions. These may be collected and the
heap reorganised in such a way that there are no holes in the heap, and the
heap may once more start growing. This process is called garbage collection,
and is not discussed here further, but see [41].

In addition to the pointers necessary for maintaining the current heap, stack
and code positions, there are three special registers in G-Code. The NODE reg-
ister holds a pointer to the current node: when evaluating a suspended sub-
expression, this points to the suspension node; when evaluating an expression
already in head-normal form, it points to the node containing the expression.
The TAG register holds a small integer which is used to identify the head con-
structor of an expression once it has been evaluated. The ACC register is a
numeric accumulator used for arithmetic operations.

3.1.2 G-Code

Code is presented in basic blocks. Each block consists of a heading line, in-
dicating the kind of block and naming an entry point into the block, followed
by data manipulation instructions, and ending with an instruction to transfer
control to another basic block.

Each block may be of one of four types. A FUNCTION block indicates the
entry point for a function defined in the source code. If it is necessary to
evaluate a sub-expression (generally when performing pattern matching) a block
ends by pushing a continuation entry point, and transferring control to the
sub-expression — later, control returns to the previously pushed entry point,
which is a CONTINUE block. When pattern selections are to be made, it may be
necessary to choose different basic blocks depending on the constructor matched.
In this case there is a different sort of block ending, with more than one transfer
instruction, all but the last conditional. The destination blocks of conditional
jumps are CASE blocks. Suspensions and constructors are represented by LABEL
blocks.

On entry, each basic block must perform certain checks. The checks that
need to be performed depend upon the type of block. A FUNCTION block must
check that it has been given sufficient arguments. If not, the result of the
function will be a function value: a partial application of the function applied
to the arguments provided. FUNCTION and LABEL blocks must check that there
is enough stack space available for their use, and for all the blocks associated
with them (CONTINUE and CASE blocks). FUNCTION, LABEL, and CONTINUE blocks
must check that there is sufficient heap space for their use, and for any CASE
blocks associated with them.

Figure 3.5 shows the first basic block associated with the function reverse:
it includes a heading line, and the two required checks (there is no heap check,
since no heap space is used). The argument is recovered, and after storing the
continuation address on the stack, the argument is evaluated.

There are two stack manipulation functions: PUSH places its argument on
the stack, decrementing the stack pointer, while POP takes an item off the stack,
placing it in its argument, and incrementing the stack pointer. The stack is
generally used for passing arguments to functions, and storing temporary results
and return addresses across function calls.
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The second basic block, shown in Figure 3.6, illustrates the continuation
block executed after completion of the evaluation of the argument to reverse.
It first checks that sufficient heap is available (to be used in the fourth block),
then removes the continuation from the stack, then examines each expected case
in turn, and ends with a catchall — there is a missing case in the definition.
This missing case check handles two situations: firstly, when a function has
been defined by cases, and not all cases have been covered by the equations;
and secondly, for generality, the interpreter assumes an untyped language, with
a flat constructor space, and any mistyped function applications will cause this
error to be generated.

Four instructions are provided for control transfer: JUMP takes the name of a
basic block entry point and uses this as the next basic block to be executed. All
other special registers remain unchanged. ENTER takes as its argument a node in
the heap. It uses this to set the special register NODE, and then transfers control
to the basic block pointed to by the first cell of the new node. RETURN sets the
special register TAG to the value of its argument, and then transfers control to
the basic block pointed to by the value at the top of the stack. SWITCH tests
the register TAG, and if it is zero, transfers control to the entry point given
as argument, otherwise TAG is decremented by one. The instructions TRY and
UNTRY are provided to enable easy comparisons between the value of TAG and
specified constructors.

There are six heap manipulation functions: NEW takes the first free element
on the heap and places its address in the argument to NEW. Locations on the
heap are allocated in sequential order with no breaks. FILL places its argument
in the first free location on the heap, advancing the first free location pointer.
STORENODE saves the current value of the special register NODE in its argument;
SETNODE reverses the process by setting NODE equal to its argument. PUT places
its argument in the location pointed to by NODE, and advances NODE; GET recovers
the contents of the location pointed to by NODE, and advances NODE.

The third and fourth basic blocks are shown in Figure 3.7 and process the two
cases of the definition of the function reverse. The block reverse2 transfers
control to the constructor Nil. The block reverse3 recovers the expressions x
and l from the current node, known to be a Cons node, then builds and saves
the arguments to append on the stack in reverse order, and calls append. Since
one of the arguments to append is a sub-expression, a suspension is created for
this, using a pointer to code block reverse4, and saving the free variable, l, of
the sub-expression.

The final block, reverse4, shown in Figure 3.8, evaluates reverse l, where
l is a free variable recovered from the suspension created in the block reverse3.
The variable l is recovered from the suspension, and pushed onto the stack as
an argument to the function reverse.

Some special functions, for example, the arithmetic functions ADD, SUBTRACT
and COMPARE, are defined as instructions using the special registers ACC and TAG.
Input and output are handled by similar instructions, READ and WRITE. The
instruction STOP terminates execution of the program, it’s argument giving the
exit status of the program.

While G-Code is intended for use as a target language for compiling func-
tional programs, it is not necessarily the case that all programs in G-Code need
be functional. Indeed, code has been written to implement updateable arrays
in G-Code, using trailers after the style of [37,42].
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FUNCTION reverse
args 1
stack 2
pop l
push reverse1
enter l

Figure 3.5: First block of function reverse

CONTINUE reverse1
heap 2
pop reverse1
try _tNil
switch reverse2
untry _tNil
try _tCons
switch reverse3
untry _tCons
jump _misscase

Figure 3.6: Continuation block of function reverse

CASE reverse2 CASE reverse3
jump Nil get _pCons x l

push x
new v
fill reverse4
fill l
push v
jump append

Figure 3.7: The two cases for reverse

LABEL reverse4
stack 1
get reverse4 l
push l
jump reverse

Figure 3.8: Code for the suspension reverse l
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3.1.3 Performing pattern matching

Pattern matching is important in functional languages, since it is during pattern
matching that expressions are reduced to weak head normal form WHNF, that
is, may be represented in a single heap cell as a constructor together with
(unevaluated) arguments. For example, in the program

reverse (Cons ’x’ Nil)

reverse Nil = Nil
reverse (Cons x l) = append (reverse l) x

append Nil v = Cons v Nil
append (Cons x l) v = Cons x (append l v)

the expression Cons ’x’ Nil is initially stored on the heap as a suspension —
as the application of the function Cons to two arguments — or directly as a
value — a node consisting of a pointer to some code identifying the node as a
non-empty list, together with two pointers, pointing to the two arguments. A
pointer to this suspension is passed to reverse as its argument. The first action
of reverse is to determine which equation should be used: this requires that the
argument be sufficiently evaluated to determine the constructor — either Nil
or Cons.

G-Code for pattern matching is very stylised — the same pattern of instruc-
tions is repeated for each argument requiring evaluation. The sequence covers
parts of several basic blocks: the initial block is completed by saving the free
variables in that block, and then evaluating the appropriate argument; a com-
plete CONTINUE block examines the register TAG and then conditionally jumps
to code for the corresponding constructor; one or more CASE blocks are started
with instructions to recover the variables saved by the initial block, and any
arguments in the evaluated heap cell (see Figure 3.9).

The start of the initial block is either the CASE block of a previous match,
or, if there is no previous match, the function header — the initial entry point,
the checks, and the recovery of function arguments. The completion of each
of the CASE blocks is provided either by the initial block of the next match,
or, if there is no next match, by code to evaluate the right hand side of the
appropriate (matching) equation. By the time a right hand side is evaluated,
all the variables free in the equation will have been recovered by instructions at
the start of the CASE blocks.

3.2 Compilation

The first stage in compiling a functional program is to parse it and extract all
relevant information. Subsequent stages of processing may involve checking,
for example, that the function definitions in the program are type correct. It is
assumed that all such stages have been completed successfully, and that the only
remaining operation is to generate code to be executed in the fashion described
above. The original source code is assumed to have been parsed and organised
into two collections: a dictionary containing type information; and a list of lists
of trees representing all the function definitions, each element in the list being
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Initial

Block

Block
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CASE

Blocks

Figure 3.9: Code blocks in pattern matching

one function definition, and each tree representing one defining equation for that
function.

Code is first generated for each constructor defined in the program, as dis-
cussed below in Section 3.2.1.

For each function, code generation takes place in three stages. The first
stage is simple: a function header is output, consisting of the function block
declaration, the checks on arguments, heap, and stack, and the recovery of
arguments from the stack into temporary variables. The second stage consists
of generating pattern matching code to decide which equation applies and to
extract the free variables used in that equation: this is described in Section 3.2.3.
Finally, code is generated for the right hand side of each equation in turn, which
is described in Section 3.2.2.

Appendix C contains a compiler from parsed source code to G-Code, written
in Miranda. Appendix B provides a simple parser.

3.2.1 Compilation of Constructors

Three pieces of code are generated for each constructor: a tag is defined as
a small integer, distinct for each constructor; a code block to be used once
an expression has been reduced to weak head normal form (WHNF); and a
constructor function to build an expression heap cell given arguments on the
stack. For example, given the two constructors for lists, Nil and Cons, the
code shown in Figure 3.10 is generated.
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tag : EQUATE _tNil 0 EQUATE _tCons 1

whnf block : LABEL _pNil LABEL _pCons
return _tNil return _tCons

constructor FUNCTION Nil FUNCTION Cons
function : args 2

heap 1 heap 3
new _v new _v
fill _pNil fill _pCons
enter _v pop _p

fill _p
pop _p
fill _p
enter _v

Figure 3.10: Code generated for the constructors Nil and Cons

The code block used once an expression has been reduced to weak head
normal form simply returns the tag value associated with that constructor: this
will be used to perform a SWITCH. The constructor function first checks that
enough arguments have been provided (if any are needed), then checks that
there is enough heap space to create a new expression heap node. A new node
is created, and a pointer inserted in the first word to point to the WHNF block.
Then each argument is recovered from the stack and placed in the heap node in
turn.

3.2.2 Compilation of Expressions

Each expression on the right hand side of a defining equation for a function
consists of a function applied to zero or more arguments. For example, the
expression for the recursive case of reverse is

append (reverse l) x

where l and x are free variables. Expressions are compiled into G-Code recur-
sively. Suspensions are created to represent sub-expressions, and the arguments
are pushed on the stack in reverse order. Once this has been done, a transfer
instruction is generated to enter the function being applied. LABEL code blocks
to evaluate sub-expressions are then generated.

Code for the recursive case of reverse is generated as follows: a suspension
is created for x, which simply consists of a pointer to x itself, which is then
pushed onto the stack. This generates the G-Code PUSH X. Next, a suspension
for reverse l is created, which is a heap cell containing a pointer to a label code
block reverse4, and all the free variables of the expression reverse l, namely
l. A pointer to this heap cell is then pushed onto the stack. This generates the
code:

new v
fill reverse4
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fill l
push v

Finally a transfer instruction to append is generated. Since append repre-
sents a global function, not a suspension, the JUMP instruction is used (ENTER is
used for suspensions). This generates the code:

jump append

Additional basic blocks are then generated for each of the sub-expressions
requiring additional code. In this case, only one such code block is required,
reverse4, to evaluate the sub-expression reverse l. For any such block, a
header is first generated, consisting of the LABEL declaration, appropriate heap
and stack checks, and a sequence of GET instructions to recover the information
stored in the suspension node.

LABEL reverse4
stack 1
get reverse4 l

(The argument to the stack instruction may only be determined from code
yet to be generated: this is no problem with lazy evaluation; otherwise some
method of back-patching must be used.)

After the header has been generated, the expression reverse l is compiled
using the compilation algorithm recursively. This generates a suspension for l,
pushing it onto the stack, and then an instruction to transfer control to reverse:

push l
jump reverse

3.2.3 Compilation of Pattern Matching

There are two stages to the compilation of pattern matching: firstly, the patterns
must be examined to determine which equations apply to any given arguments,
and secondly, code is generated to test the arguments, and switch to the code
for the right equation.

This process may be made more comprehensible by the use of another in-
termediate code. There are three fundamental actions in pattern matching: to
head-evaluate an argument; to switch between one of several courses of action
depending on the result of a head evaluation; and to select an equation as the
desired choice. A fourth action, to fully evaluate an argument, is presented
here for completeness. This code is called HESF-code from the initials of its
four instructions. Any pure pattern-matching algorithm may be expressed in
HESF. However, when pattern-matching interacts with guarded equations (for
example, in Miranda), this code is inadequate, and would need to be extended.

The process of determining what this intermediate code should be contains
all of the hard work in compiling pattern matching: translating this code to the
stylised form of G-Code described in Section 3.1.3 above is relatively easy.

Acquiring HESF-code is not so easy. The algorithm described here is more
complex than is absolutely necessary, since it was originally developed with
the objective of calculating the range of values actually covered by each of the
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defining equations of a function, which is required for Chapter 7. The use of
the data structures created here to determine these ranges of values is covered
fully in Section 5.7.

The HESF generation algorithm comes in five stages:
First, the patterns are massaged, if necessary, into a standard form. For

example, in Miranda it is possible to write a the same variable twice in a single
defining equation, the implication being that the same value be found in each
place if the match is to succeed. In this case it is necessary to separate out
this test into an appropriate form. For example, the function member to test
whether a list contains a particular value might be defined:

member Nil x = False
member (Cons x l) x = True
member (Cons y l) x = member l x

This would be rewritten to

member Nil x = False
member (Cons y l) x =
if (x == y) True (member l x)

No such massaging is needed in Flair.
Second, a table is constructed which describes the equation coverage, that

is, the sets of values over which each equation is apparently defined.
Third, a selection function is applied which reduces the sets of the values in

the table to make the equations disjoint, that is, only one equation is defined over
any given argument values. This operation is performed on the table generated
at the second stage, but can be viewed as being a source to source transformation
on the original code. For example, a version of the min function which gives
answer 0 on the empty list rather than an error might be defined

min0 Nil = 0
min0 l = min l

These two equations overlap on the argument Nil: assuming the first equa-
tion is to be used in this case, the second equation may be made disjoint by
rewriting it to

min0 (Cons x l) = min (Cons x l)

The algorithm described in Section 5.7 is equivalent to this source to source
transformation.

Fourth, the new table is used to generate HESF-code.
Fifth, the new table may be used to generate the sets of values over which

the equations actually hold.
The first and third points, the massaging and selection steps, are entirely

dependent on the pattern-matching convention being used, and will not be con-
sidered further — Appendix C includes the particular case of the Flair conven-
tions, which are very simple. The fifth step is concerned with the use of the
equations in proof, and will be discussed in Section 5.7. The two remaining
steps are described in detail here.
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The second step consists of constructing a table describing the equation
coverage. It consists of a list of pairs: the first element of each pair is the value
coverage, consisting of a list of constructors; the second element is the result,
which may come in one of two forms: it may be a table constructed analogously,
or it may be a list of zero or more equations which apply with these constructors.
In fact, the top-level table itself may be just a list of zero or more equations
which are always selected. For example, with reverse, the following table is
constructed:

Constructor Result

Nil [1]
Cons [2]

The algorithm for constructing the table begins with a list of lists of pat-
terns: one pattern for each argument position for each equation. From this it
first deduces a list of the constructors which may appear as the head of each of
the patterns for each argument position. In general, the full complexity of the
algorithm described here will not be needed; as a consequence, for an example,
the somewhat pathological function mink will be used. mink takes two argu-
ments, a strict natural number, n, and a strict list, l, and returns the minimum
value of the first n elements of l, or Zero if n is Zero or the list is empty.

mink Zero l = Zero (1)
mink k Nil = Zero (2)
mink k (Cons a Nil) = a (3)
mink (Succ Zero) l = hd l (4)
mink (Succ k) (Cons a (Cons b l)) = (5)
mink k (Cons (if (<= a b) a b) l)

The equation numbers on the right hand side will be used when referring to
the equations, particularly to the right hand side of each equation when deciding
which to execute.

The list of lists of patterns extracted from this function definition is:

[[Zero, k, k, Succ Zero, Succ k ],
[l, Nil, Cons a Nil, l, Cons a (Cons b l)]]

The head constructors for each argument position may be determined by
examining each of the patterns in each of the lists, substituting * for any pattern
which is simply a variable rather than a simple pattern involving a constructor.
The semantics of * is that it represents any constructor not otherwise listed,
but does not match ⊥. This produces the list of sets

[{Zero,Succ,*},{Nil,Cons,*}]

The value coverage of this function, that is, the possible combination of
head constructors, may be found by forming the cartesian product of this list
of sets:

{(Zero,Nil),(Zero,Cons),(Zero,*),
(Succ,Nil),(Succ,Cons),(Succ,*),
(* ,Nil),(* ,Cons),(* ,*)}
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For each element of the value coverage, it is possible to examine the patterns
in the defining equations above, to see which could apply to the element of the
value coverage under consideration. A variable in the pattern will match any
constructor in the appropriate position in the value coverage; the constructor
* in the value coverage will only match patterns not beginning with one of
the specific constructors in that argument position. For example, * in the first
argument position of the value coverage will not match Zero or Succ in the first
argument position of any pattern.

The results of performing this matching for the value coverage above are
presented below:

(Zero,Nil ) [1,2]
(Zero,Cons) [1,3]
(Zero,* ) [1]
(Succ,Nil ) [2,4]
(Succ,Cons) [3,4,5]
(Succ,* ) [4]
(* ,Nil ) [2]
(* ,Cons) [3]
(* ,* ) []

Each element of the value coverage has an arity: this is the sum of the arities
of the constructors forming the value coverage, where the pseudo-constructor * is
given arity zero. If the arity of an entry in the value coverage is greater than zero,
then the entry may be further subdivided by the arguments to that constructor.
For example, the pair (Succ,Cons) has arity three — Succ has arity one and
Cons arity two. The possible constructors to which these may be applied in the
patterns are determined as before. The generic variable * appears wherever a
variable appeared in the original pattern, or where a variable appeared as an
argument to the given constructor. For the (Succ,Cons) case, this gives rise to
a new list of sets of constructors:

[{Zero,*},{*},{Nil,Cons,*}]

which, in turn, gives rise to the value coverage determined as a cartesian product
of this list of sets:

{(Zero,*,Nil),(Zero,*,Cons),(Zero,*,*),
(*, *,Nil),(*, *,Cons),(*, *,*)}

which can be matched against the original patterns to decide which equations
hold over which elements of the value coverage in the same fashion as before:

(Succ Zero) (Cons * Nil) [3,4]
(Succ Zero) (Cons * Cons) [4,5]
(Succ Zero) (Cons * *) [4]
(Succ *) (Cons * Nil) [3]
(Succ *) (Cons * Cons) [5]
(Succ *) (Cons * *) []
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The entries in this table involving Cons have arity two, and so need a further
iteration of the algorithm, which simply produces the singleton set {(*,*)} for
the value coverage. The resulting tables of the full application of this algorithm
are presented in Figure 3.11, where Table 1 is the top level table, and the other
tables appear inside it as noted. This completes the second stage of the HESF-
generation algorithm.

The third stage of the algorithm processes the generated table to produce
a new table. The new table is identical to the first, except that at most one
equation number of each list for the value coverage in the original table may
appear in the corresponding list in the new table, although it is perfectly per-
missible for no equation numbers to appear, signifying that the entry of the
value coverage is not covered by the equations. Any number of methods may be
used, depending on the pattern-matching convention being used. A frequently
used (and simple) method is to choose the equation which appears textually first
in the function definition, which corresponds to choosing the lowest numbered
equation. The table resulting from this is given in Figure 3.12. An alternative
method is to make sure that in order for an equation to be selected it must be
the most precise. In this case, the table coverage is examined, and the equation
selected whose coverage forms the smallest proper subset of the coverage for the
listed equations. This has the advantage of only depending on the meaning of
the equations, not on their layout, but has the disadvantage that some systems
of equations are illegal. For example, a function of two arguments which has
three equations (specific on first argument, specific on second argument, general
on both arguments) would not be permitted.

The fourth step of the HESF-generation algorithm, and the last to be de-
scribed here, consists of generating HESF-code from the table in Figure 3.12.
The algorithm is recursive and is applied to a “current table”, initially Table 1
of Figure 3.12, and a list of argument position names. The resulting HESF-code
consists of repeated head-evaluations followed by case analysis on the resulting
head constructor. If arguments to be evaluated appear equally likely to resolve
which equation should be used, then the choice is made arbitrarily. This may
affect the termination characteristics of the function, but no one choice can be
said to be better than any other in the abstract.

The first step is to decide which argument should be head-evaluated: the
argument chosen should cause the greatest separation amongst the equations,
that is, the table is divided into sections by cases of the selected argument, and
the best separation occurs when the resulting tables have the least number of
equations in common.

After a column has been chosen, a case analysis is performed, and for each
possible constructor, a new table is formed, and each processed recursively. The
recursion ends when no constructors remain in the table to be matched.

Code is generated at three points during this algorithm: once a column has
been selected, a head-evaluate instruction for the corresponding argument is
generated; a switch instruction is generated corresponding to the case analysis;
and an equation-select instruction is generated when the recursion ends.

In the example, the first column is selected for head evaluation, and the
instruction

Head 1
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Table 1: top level table
Zero Nil [1,2]
Zero Cons see Table 2
Zero * [1]
Succ Nil see Table 3
Succ Cons see Table 4
Succ * see Table 5
* Nil [2]
* Cons see Table 6
* * []

Table 2: Context: Zero, Cons
* Nil [1,3]
* * [1]

Table 3: Context: Succ, Nil
Zero [2,4]
* [2]

Table 4: Context: Succ, Cons
Zero * Nil [3,4]
Zero * Cons see Table 7
Zero * * [4]
* * Nil [3]
* * Cons see Table 8
* * * []

Table 5: Context: Succ, *
Zero [4]

Table 6: Context: *, Cons
* Nil [3]

Table 7: Context (Succ Zero), (Cons * (Cons))
* * [4,5]

Table 8: Context (Succ *), (Cons * (Cons))
* * [5]

Figure 3.11: Table construction for the function mink
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Table 1: top level table
Zero Nil [1]
Zero Cons see Table 2
Zero * [1]
Succ Nil see Table 3
Succ Cons see Table 4
Succ * see Table 5
* Nil [2]
* Cons see Table 6
* * []

Table 2: Context: Zero, Cons
* Nil [1]
* * [1]

Table 3: Context: Succ, Nil
Zero [2]
* [2]

Table 4: Context: Succ, Cons
Zero * Nil [3]
Zero * Cons see Table 7
Zero * * [4]
* * Nil [3]
* * Cons see Table 8
* * * []

Table 5: Context: Succ, *
Zero [4]

Table 6: Context: *, Cons
* Nil [3]

Table 7: Context (Succ Zero), (Cons * (Cons))
* * [4]

Table 8: Context (Succ *), (Cons * (Cons))
* * [5]

Figure 3.12: Selected table for the function mink
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is generated. The case analysis gives three possibilities: Zero, Succ, and *,
where * represents the default case. The table is split into three according to this
analysis, and each table transformed by eliminating the selected column from
the table and introducing from subsidiary tables the arguments corresponding
to that constructor. This gives rise to the three tables of Figure 3.13. The only
complex case is that of Table 10, since the other two merely require the deletion
of the first column.

Table 9: top level table for recursive case Zero
Nil [1]
Cons see Table 2
* [1]

Table 10: top level table for recursive case Succ
Zero Nil [2]
Zero Cons see Table 12
Zero * [4]
* Nil [2]
* Cons see Table 13
* * []

Table 11: top level table for recursive case *
Nil [2]
Cons see Table 6
* []

Table 12: recursive case Succ, Context Zero Cons
* Nil [3]
* Cons see Table 7
* * [4]

Table 13: recursive case Succ, Context * Cons
* Nil [3]
* Cons see Table 8
* * []

Figure 3.13: Recursive tables for the function mink

Once the first column, consisting of Succ, has been eliminated, the columns
in the inner tables corresponding to the arguments of Succ may be retrieved,
consisting of Zero and *. These are brought to the top level, and the cartesian
product of these with the other arguments in the table are formed, giving the
value coverage

Zero Nil
Zero Cons
Zero *
* Nil
* Cons
* *



3.2. COMPILATION 39

The equations corresponding to the coverage are then examined and lifted.
Inner tables are split and regrouped according to the constructors that have
been lifted to the top level of value coverage. This causes Tables 3, 4 and 5 to
be each split in two. The two halves of each of Tables 3 and 5 appear directly in
the new top level table, Table 10, and Table 4 is split into two new inner tables
with identical coverage, Tables 12 and 13, which are referenced in the top level
table, Table 10.

This case analysis gives rise to the HESF switch instruction:

SWITCH {
Zero -> compile Table 9;
Succ -> compile Table 10;
* -> compile Table 11

}

The compilation proceeds recursively, until no further matches may be per-
formed, and the code given in Figure 3.14 is produced.

Head 1 Switch {
Zero -> Eqn 1
Succ -> Head 2 Switch {
Nil -> Eqn 2
Cons -> Head 2.2 Switch {
Nil -> Eqn 3
Cons -> Head 1.1 Switch {
Zero -> Eqn 4
* -> Eqn 5

}
* -> Head 1.1 Switch {
Zero -> Eqn 4

}
}
* -> Head 1.1 Switch {
Zero -> Eqn 4

}
}
* -> Head 2 Switch {
Nil -> Eqn 2
Cons -> Head 2.2 Switch {
Nil -> Eqn 3

}
}

}

Figure 3.14: HESF code for pattern matching for function mink

HESF code may be easily converted into G-Code. Head-evaluating an argu-
ment corresponds to completing a block by pushing any current free variables,
the address of a new continuation block, and then entering the argument to
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be head-evaluated. The new continuation block is generated, recovering the
variables saved by the original block.

Switching consists of examining the TAG value, comparing it to each case
needing consideration, and switching to an appropriate CASE block for each. If
there is a default case in the switch, then an unconditional jump to an appro-
priate CASE block is generated for this; otherwise an unconditional jump to the
error “missing case in definition” is generated. Each case block is generated
recursively, starting by recovering the contents of the current heap node — the
arguments of the constructor.

An equation-select instruction is compiled into G-Code as a series of instruc-
tions to organise the internal machine state ready for the equation, and then
transferring control to the first block of the equation.

There is a subtlety here involving guarded equations, which have not been
mentioned in the above discussion (and are not included in FLAIR). In some
cases, guarded equations can interfere with pattern matching, in the sense that
the most obvious matching equation is not selected because all its equations are
covered by guards, none of which are satisfied. For example, the function f may
be defined

f (Cons x l)
= 1, x >= 0
f l = 0

which has two defining equations: the first holds for non-empty lists with pos-
itive first elements; the second equation holds not only for empty lists (the
natural result of pattern matching) but also for non-empty lists with negative
first elements. This can be resolved by suitable program transformation (adding
an extra default case to the guarded definitions). For example, f may be trans-
formed to:

f (Cons x l)
= 1, x>=0
= 0, otherwise
f l = 0



Chapter 4

Functional Program
Development Environment

The research described here is directed towards producing a design for an envi-
ronment for the development, manipulation and proof of functional programs.
Such an environment was briefly discussed in Section 1.7 and consists of a col-
lection of cooperating tools. This environment offers a standard interface to
the tools available: an editor, a compiler, an executor, a file manager, a debug-
ger, and a proof assistant. This idea itself is not new — many compilers are
provided with such environments. What is new here is the inclusion of a proof
assistant with the set of development tools, and the way in which a programmer
is encouraged to move from program development to documentation and proof
through the spectrum of tools.

The environment aims to provide a range of tools to assist in the development
of functional programs. A program is initially constructed using an editor, based
upon an original specification and design. The documentation for the program
is developed in parallel with the program. When the program, or part of the
program, has been completed it may be tested and debugged in the usual way,
with the possible assistance of the debugger. Properties, obtained from the
original specification or design, are stated, and then tested in the same way as
other program fragments, to check that they are correct. Once the programmer
is reasonably assured of the correctness both of the program and the properties,
proofs of these properties are attempted using the proof system (described in
Chapter 7) through the proof assistant (described in Chapter 8). The initial
structure of these proofs may be obtained from a trace produced by the debugger
during the testing of the property.

This attitude to proof has two advantages over some other methods of proof:
firstly, it is performed at the workstation, with machine assistance, as a natural
part of program development, rather than as a necessary part of the quality
assurance programme; secondly, the process of proof is an extension of the test-
ing process, since the initial structure of the proof is obtained directly from the
testing of the property. This method of extracting the outline of a proof from
testing the property contrasts with methods for extracting a program from a
proof of a specification (for example, see [81]), in which a program may be au-
tomatically generated from a constructive proof that there is a function which
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matches a given specification, in three ways: the primary development is of a
program, not a proof; the proofs are of general properties, not function speci-
fications, and are proved from the known properties of defined functions; and
the proofs are constructed manually, with machine assistance, from programs
constructed manually, rather than extracted automatically from proofs created
entirely by hand. Chapter 10 discusses a possible method by which it might
be possible to develop code and proof simultaneously from a specification, with
machine assistance.

The environment described here has two primary objectives: it is intended to
be natural and easy for functional programmers to use, and to develop and prove
program properties with; and it should be sufficiently flexible to allow customi-
sation, and the easy introduction of new tools. However, it is not the intention
at this stage to develop an entirely functional system, although Chapter 10
contains some ideas relating to a purely functional development environment.

4.1 Previous Environments

Previous environments have, in the main, concentrated on providing support
for programmers with imperative languages. Interestingly, Smalltalk [26] and
InterLisp [75], which have been two of the most successful environments, have
been based on non-traditional models. Since we are designing an environment
for use in developing functional language programs, a highly functional approach
seems desirable. The biggest leap to be made in realising this goal is overcoming
the lack of implicit state in functional languages, typically used as a cornerstone
in programming environment development.

Previous work has concentrated on acheiving three primary goals in assist-
ing programmers: working with a single language for all programming tasks –
coding, command language, and debugging; merging a set of tools to give the
illusion of working with a single tool; and introducing meta-programming lan-
guages into the environment. Many environments have been created explicitly
to make a single feature, for example, an advanced debugger, more accessible.
Almost all environments assume that the user has access to a high-resolution
bit-mapped display with a mouse and a considerable amount of CPU power.

Smalltalk and Interlisp, as mentioned above, are probably the most success-
ful of the environments to date. These environments, together with MESA,
consist of a single tool, with a single address space, but are open and extensible,
allowing new functionality to be incorporated into the system at any time. GNU
Emacs, with its lisp configuration language, provides an environment somewhat
similar to InterLisp, providing vast and diverse functionality within a single
system.

Within the auspices of the Gandalf project at CMU [29], Garlan and Miller [23]
have developed a different approach to environments. The idea in this work
is specifically aimed at solving the problems encountered by novice program-
mers. As a consequence, the environment is very much editor-centred: a family
of menu-driven structure editors, semi-automatically derived from a BNF-like
language definition are used to assist the programmer in writing correctly struc-
tured programs. As these are written, the parse trees for them are constructed
and checked, and then their meaning is also checked. Errors are automatically
collected, and modification is provided when requested. Program execution is



4.1. PREVIOUS ENVIRONMENTS 43

also driven structurally from within the editor. Much of this work is similar to
that of the Cornell Program Synthesizer [74].

The MESA programming environment [73], developed at the Xerox PARC
(as was Smalltalk), was expressly monolingual from its inception, and was built
up, by usage rather than design, from reusable components: for example, in
its user interface. The intention was to produce a system which integrated the
operating system, programming language, and development environment under
one large umbrella. To the user this system should appear as a single cooperative
tool, while providing varied functions in a collection of windows. This illusion
was created using a number of techniques: most importantly, each tool was
designed with a single purpose - to assist the user in acheiving a specific goal
- and to work with the other tools in doing so; the reuse of components that
gave a consistent interface across all the tools; the sharing of information (and
particularly the commonality of data types, made possible by the using of a
single programming language); and the considerable use of first-class functions,
even though MESA is not functional. Sweet, the paper’s author, comments that
in his opinion, this use of procedure variables in a wide variety of roles was the
single most important feature of the MESA programming environment.

Magpie [16] uses a similar set of principles to create an illusion about its
user interface. By allowing and encouraging tools to cooperate - by sharing
information, understanding what other processes are trying to achieve, and per-
forming many updates incrementally while the user is inactive, (e.g. thinking).
Magpie is targetted at PASCAL programmers, and at integrating the standard
tools (editor, compiler, debugger) into a single system. In particular, the edi-
tor window shows both static information (the code) and dynamic information
(for example, breakpoints, and the values of variables). All the interaction with
Magpie takes place in a single programming language - PASCAL - augmented
with standard windowing, to control the actions performed, the debugging, and
of course, the program being developed. The advantage of this approach is that
program development becomes the task of manipulating one compound object,
with the connections already made, rather than a number of distinct objects.

Blair and Malik [7] describe how functional languages can be combined with
Object Oriented programming to produce a language particularly suited for
developing programming environments. The model they present for Object
Oriented programming is radically different to that normally proposed [85]. In-
stead of having objects, classes and an inheritance relation, they set forth a
model based on encapsulation, whereby an object has a well-defined behaviour
entirely expressed by its interface; abstraction, which allows objects with sim-
ilar properties to be grouped together; and polymorphism, which permits two
objects to have the same method, either with identical behaviour (as with inher-
ited functions) or with radically different behaviours, but similar intentions (for
example, print on a list and a number). From this basis the authors build up a
programming support environment intended for use with the ADA programming
language (although all the concepts they present are in fact language indepen-
dent). Their version of Object Oriented programming, combined with essentially
functional methods, enables the system description, and object heiracrchy, to
be introduced incrementally, and new tools to be introduced seamlessly as and
when they become relevant to the environment. This approach also encourages
sharing and reuse, as with the MESA environment.

A more theoretical approach is pursued in [33]. Here, the three distinct



44CHAPTER 4. FUNCTIONAL PROGRAM DEVELOPMENT ENVIRONMENT

types of language normally encountered by programmers - programming lan-
guages, command languages, and debugging languages, are considered, and the
differences between them noted. An attempt is then made to produce a uni-
fied programming language, whose features (in one way or another) may then
be used in all three modes. This has some interesting consequences. Files are
commonly used by a command interpreter such as the UNIX shell [8], which in
a programming language is equivalent to having a persistent store. The distinc-
tion between a program and a procedure is necessarily blurred almost to the
point of non-existence, since a program is simply a procedure with an extra layer
of protection from the outside world. The impact on input and output for both
programs and procedures is to produces a standardised idea of streams. These
can be used for communication between procedures (like pipes in the shell) as
well as for interaction with the user of the system. Integrating the debugging
language leads to a generalised mechanism for event and interrupt handling, as
well as generic process control (e.g. tracing and breakpoints) using coroutines.

As part of the Alvey Flagship project, Darlington et al. [15] propose an
environment using the parallel functional language Hope+. As well as provid-
ing the basic components of an environment, this provides a system for meta-
programming, where the meta-programs are written (generally interactively) in
the same functional language. Operations such as memoisation and inversion of
functions, together with a wide selection of transformation functions, are pro-
vided as meta-programming primitives, as are types for representing programs
and program fragments. Incorporating this into a standard functional program-
ming language allows tacticals like those used in [60] to be incorporated directly
into meta-programs. It also provides a uniform development environment for
both programs and meta-programs. Meta-programming for parallel programs
(particularly with ALICE, a parallel graph-reduction system built on Flagship)
is also described.

A different approach to graphical programming systems is described in [19].
Here, instead of working with a textual representation, each object is represented
as a graphical object. These objects may then be combined by linking them
together graphically to represent function calls in the program. Although not
described, it is relatively easy to see how this could be extended to include
dynamic information in the display, by connecting this information to the links,
and likewise meta-programs (if written similarly) could be incorporated in the
same model.

From these previous attempts to produce programming environments, sev-
eral key points stand out. Focus is essential: each tool in the environment
must know its place, and be attempting to acheive something specific, and must
be prepared to cooperate with other tools with different goals. Minimising
the number of languages maximises the programmer’s effectiveness. As much
information as possible should be presented and manipulated graphically. In-
formation displayed to the user should be grouped in the way that the user
expects, and should be relevant to what the user is trying to acheive, and not
just in the way that is easiest for the tool generating it.
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Figure 4.1: Exploded View of Coordinator

4.2 Environment Architecture

The central idea of a development environment organised as a collection of
cooperating tools was set out in Chapter 1. This section provides a design for
this system as a whole, and, in particular, the tool marked on Figure 1.1 as
the “coordinator”. Figure 4.1 gives an exploded view of the module structure of
the coordinator, comprising four components: a user-interface module providing
graphical and textual user-interaction services (for example, windows and icons);
an editor module providing basic (and advanced) text handling and editing
facilities; a functional program module actually responsible for the coordination;
and an interfacing module which allows for a message-passing interface which
allows any of the tools (and especially the central coordinator) to believe they
live in a functional world. In this model just about everything is driven by the
coordinator: the only communication path between any other tools or modules
is through the coordinator; the user’s interaction with the system is always
directly to the UI module, and from there to the coordination module - never
directly to any of the tools.

This model has a number of advantages: since all the interaction goes
through one center, the system can always be regulated so that it remains consis-
tent; optimisations can be made on what actually needs doing; facilities provided
by the coordination (eg. UI and editor) do not need to be replicated; configu-
ration information may all be placed together, and, where relevant, stored; and
if, as here, the central coordinating module is programmable, the environment
becomes an order of magnitude more powerful.

From the point of view of the central coordinating module, it is a stan-
dard functional program, running with the stream-based requests and responses
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model. The requests issued are directed at specific tools, and the responses gen-
erated constitute input to the program. A facility is also provided within the
interfacing module for handling asynchronous I/O. This is primarily intended
for user input, for example, keypresses or mouse selections. Consequently, all
it sees of the environment is a sequence of responses in reply to a sequence of
requests.

Likewise, each of the tools in the environment is provided with a view of
the rest of the environment which is very homogenous - a set of services are
available, either synchronously or asynchronously, and appear to be provided
by a single tool - “the environment” - although fulfilling a request could involve
passing a message to every tool in the environment - even itself!

The environment is coupled together using message passing. When the en-
vironment is started, it is only really the coordinator which starts, and this
immediately loads and executes the driving functional program. This program
starts by performing its initialisation sequence, which will typically involve reini-
tialising tools from previous sessions, recovering data, and displaying windows
for the user. The requests and responses streams for this functional program
must always be kept in synch and responsesi+1 will always be the response to
requestsi. Consequently, as the system starts up, the functional program is
fed the response Initialise before it generates any requests. After this, any
generated request must always have a response.

To start a tool, the central coordinating module generates the message
StartTool tool-name tool-args, which is acted upon by the interface mod-
ule. This generates a response either acknowledging the creation of a tool and
giving a handle for further communication with it, or giving a diagnostic that
the tool could not be started. A negotiation then begins between the coordi-
nator and the tool to agree a protocol that they should speak - this generally
consists of three numbers: a tool identifier; a protocol level; and a protocol revi-
sion. The purpose of the tool ID is to clarify the type of protocol, eg. compilers
have a very different set of operations to debuggers, and so each has a spe-
cialised protocol. The level is a way of categorising the features it presents, eg.
compiling a standard file is a basic (level 0) facility for a compiler; incremental
compilation would be at a higher level (eg. level 2). The revision number is
provided for smaller enhancements, and to allow minor changes (for example for
performance) to be included. At a minimum each particular tool should be able
to speak level 0, revision 0 protocol. Any others are optional. Tool 0 always
addresses the interface module directly. Although physically part of the coordi-
nator, the editor and UI modules are considered logically separate, and so must
be stated in this way. Negative tool, level and revision numbers are reserved for
experimental, local or temporary use. In addition to the tool-specific protocols,
other more general protocols could be supported.

The protocol negotiation consists of a series of messages passed back and
forth between the tool and the interface module of the coordinator. Each mes-
sage consists of a suggested protocol. The coordinating module starts the ne-
gotiation, to which the tool responds. When either the tool or the coordinator
receive a suggestion that is acceptable, they send an accept-protocol message.
Thereafter they may communicate using that protocol.

Asynchronous I/O is handled by the interface module. Any messages re-
ceived by the interface modules “out of turn” are placed in one of several queues.
The number of queues is implementation-dependent, but at least two are rec-
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ommended: one for standard requests, and one for priority requests (such as
interrupt). When the coordinating module has nothing to do (eg. after finish-
ing initialisation) it sends a message to the interface module asking for an event.
If the interface module has asynchronous events pending, it returns the first one
from the highest priority list. If no events are pending it will either block or
indicate this status, depending on the exact request.

This design provides several useful features: the environment may be viewed,
manipulated and controlled by an entirely functional program written in the
same functional programming language in which the user of the system (a func-
tional programmer) will be writing programs on a daily basis; the environment
appears to be a single entity when iewed from any angle; the system of proto-
cols allows for easy substitution of tools, and for an extensible architecture; the
use of a complete programming language for configuration allows many more
options than usual; and the separation of functionality allows massive re-use,
particularly of the UI components.

4.3 Coordinator facilities

The previous section described the overall architecture of the system. The
purpose of this section is to look closer at the four modules comprising the
coordinator, as shown in Figure 4.1. The central coordinating module is just
a functional language program executor running the user-specified control pro-
gram, which defines a function from responses to requests. The interface module
has been discussed in some detail, although a more formal presentation of its
level 0 protocol will be given here. The editor and UI modules have not yet been
discussed. The minimum requirements, and the consequent level 0 protocols for
these two modules will be presented.

The presentation of the protocols is given as if defining abstract data types.
However, union types are used frequently, for example, each protocol is a su-
perset of the interface protocol, including for example, the success and failure
values.

Each message is surrounded by a wrapper that identifies the tool to which
the message is to be sent. The tools are identified by an integer handle; 0 is
reserved for the interface module; all the others are passed to the central module
as responses when the tools are started.

The interface module can be seen as a very low-level core for the environment.
It provides both a requests/responses interface to a non-functional environment,
and the basic services necessary for the functioning of the environment. It
initially always starts talking level 0 Interface protocol, but may be negotiated
higher (on the initiation of the coordinating module). The level 0 protocol is:

data interface_0.0_req =
ReadRawFile FileName |
WriteRawFile FileName [char] |
StartTool ToolName Args |
StopTool Tool |
AsyncEvent |
AsyncEventNoBlock
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data interface_0.0_resp =
Initialise Args |
Data [char] |
NewTool Tool |
Event EVid [event] |
NoEvent |
Success |
Failure ErrCode ErrMess

type FileName = [char]
type Args = [[char]]
type ToolName = [char]
type ErrCode = int
type ErrMess = [char]

The level 0 negotiation protocol (spoken by each of the tools) is:

data negotiation_0.0_req =
Protocol ToolType Level Revision |
AcceptProtocol

type negotiation_0.0_resp = negotiation_0.0_req

type Level = int
type Revision = int

The editor module of the coordinator provides editing services to the envi-
ronment. These services essentially consist of maintaining and manipulating a
collection of buffers. Each buffer contains a single piece of textual information,
and will often correspond to the contents of a file.

The services provided by different editor modules may vary drastically. How-
ever, certain facilities must be provided as an absolute minimum, and these are
specified within the level 0 editor protocol (see Figure 4.2).

We want the capabilities to store multiple buffers because the user is going
to want to be working with more than one file at any one time, and additionally,
various tools will be wanting to open editing sessions for various internal reasons
(for example, the proof assistant will want scratch buffers for displaying proofs).
Each of these buffers is then uniquely identified by an integer handle. Since
this system is intended to be functional, the protocol for the editor has no
attached state, for example, no idea of a “current buffer”, although the editor
module itself might well have such a notion internally (for example, for efficiency
reasons).

The obvious facilities to provide are capabilities to insert and delete text.
Additinally, two search procedures - one for strings, the other for regular ex-
pressions are provided. The insert and delete requests give responses of either
success or failure (the most likely reasons for failure being non-existent handles
or points outside the cited buffers). Search requests may produce failure, or else
a pair of numbers indicating the region of text found. A region of text is always
measured including the character at the start position and excluding the one at
the finish position. A region where the second number is less than or equal to
the first contains no text.
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data editor_0.0_req =
Create BuffName |
Destroy EdBuf |
Insert EdBuf Pos Text |
Delete EdBuf Pos Pos |
Search EdBuf Pos Pos Text |
RESearch EdBuf Pos Pos RegExp |
NewMark EdBuf Pos |
SetMark EdBuf Mark Pos |
DelMark EdBuf Mark |
GetMark EdBuf Mark |
Recover (edbuf e) (pos start) (pos end) |
GetChanges (edbuf e) (int tidemark)

data editor_0.0_resp =
NewBuffer BuffName EdBuf |
LocatedAt Pos |
Text ([char] t) |
Changes (int tidemark) [(pos start,pos end,[char] text)]

type BuffName = [char]
type EdBuf = int
type Text = [char]
type RegExp = [char]
type Pos = Mark | Loc
data Mark = Mark int
data Loc = Loc int

Figure 4.2: Level 0 Editor Protocol
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In addition to buffers, the other “non-obvious” feature required of the editor
module is marks. A mark is a point in the buffer which does not move relative
to the text. For example, if the text “f x = x+2” is in the buffer, and a mark
is placed over the “ = ” character, then inserting “ y ” as a second argument
to the function f will advance the position of the mark so as to leave it still
over the “ = ” character. If a region containing the mark is deleted, then the
mark is left pointing to the character after the region. If text is inserted at the
mark, it is placed before the mark. Functions exist in the protocol to create,
set, interrogate and delete marks. Two marks Mark 0 and Mark 1 are created
and maintained automatically by the system, and mark the beginning and the
end of the buffer. They are particularly useful as arguments to, for example,
delete and search to specify the entire buffer.

In order to make full use of views in the user interface module, it is also
necessary to be able to recover text, and to note changes over a period of time.
In order to do this, the facilities to recover a particular area of text, and to get
all the changes since a specified prior point in time - a tidemark - are provided.
The latter recovery requires an integer specifying the tidemark, and along with
the returned list of changes, the response gives a new tidemark, representing
the current state of the buffer.

The user interface module should provide a complete range of services, at
high, intermediate and low levels. Such a range of services would however, be
totally impractical to describe here. Instead, four categories of operations are
presented: text windows, formatting/layout windows, dialog boxes, and a “drag
and drop” facility. While all these facilities are doubtless familiar from current
window systems, a brief description of their intended use follows.

Text windows are used primarily for editing sessions, interactive sessions (e.g.
with command line shells or debuggers), and for the presentation of textual data
in the form of lists. For this reason, they are generally associated with an editor
buffer, are scrollable vertically (and often horizontally), and need to be updated
whenever an edit takes place.

Layout windows use Tex-style [46] formatting and layout constructions to
build up a formatted structure. This can be used for presenting help screens,
drawing simple diagrams and constructing complex displays.

Dialog boxes allow for user entry in a number of ways and forms of struc-
tured data. The applications for this range from answering simple questions to
entering all the data for a particular program or task.

These three categories of operations all result in the presentation of a window
on the screen containing some information. The fourth category - “drag and
drop” - is orthogonal to these. It represents the transfer of data between any two
windows. “Drag and drop” indicates that the information is selected, usually by
a suitable mouse gesture, and then copied to another point where it is placed.

Specifically not included in this simple protocol are: any form of graphics
display, including simple graphics, postscript display, raster display, or any form
of 2-D or 3-D rendering; low-level access to attributes such as colors, shading,
patterns or input devices; and any intermediate level access to menus, popups,
dragging, rubberbanding or buttons.

The level 0 protocol is defined as the union of the three window protocols.
The drag and drop is internal to the UI module, and so does not have a separate
protocol.

Text windows are created by specifying a view to be associated with, a
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type UI_0.0_reqs =
UI_tw_0.0_reqs |
UI_lw_0.0_reqs |
UI_db_0.0_reqs

type UI_0.0_resps =
UI_tw_0.0_resps |
UI_lw_0.0_resps |
UI_db_0.0_resps

Figure 4.3: User Interface Protocols

data UI_tw_0.0_reqs =
CreateTWindow View Size Size bool bool |
Refresh Window

data UI_tw_0.0_resps =
NewWindow Window

type Size = int

Figure 4.4: Text Window Protocol

minimum size in characters, and whether or not horizontal and vertical scrollbars
are to be provided. In the absence of a horizontal scrollbar, characters will be
wrapped to the next line; in the absence of a vertical scrollbar, any lines which
do not fit will be truncated from the display. The only other request supported
by a text window is to redisplay itself.

Layout windows follow TeX layout and formatting instructions. Conse-
quently, they contain aspects such as boxes, glue, groupings, fonts, text, lines,
etc. While the protocol itself is very small, the data type texl is very large.
Figure 4.5 contains the protocol together with a sample of the data type texl.

As with layout windows, dialog boxes have a fairly simple protocol, coupled

data UI_lw_0.0_reqs =
CreateLWindow texl

data UI_lw_0.0_resps =
NewWindow Window

data texl =
Text [char] |
Font FontName FontSize texl |
Box [Attributes] texl |
...

Figure 4.5: Layout Window Protocol
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data UI_db_0.0_reqs =
CreateDBox DBox

data UI_db_0.0_resps =
NewWindow Window |
DBoxActivated Window Int DBoxRtn

Figure 4.6: Dialog Box Protocol

data dbox =
Label [char] |
Active [char] int |
Select [[char]] |
Scroll [[char]] int int |
Overlay [([char],dbox)] |
Outer |
Check [char] bool |
Text bool int [char] [[char]] |
TBBox [dbox] |
LRBox [dbox]

data dboxrtn =
Str [char] |
OvRtn [char] [([char],dboxrtn)] |
CkRtn bool |
BoxRtn [dboxrtn]

Figure 4.7: Dialog Box Data Structure

with a complex data type. The window is created, and a handle returned. When
one of the action buttons is activated, the UI module generates an asynchronous
message to the coordinator, indicating the activation button pressed and giving
all the data captured in the window. The protocol is given in Figure 4.6.

Creating the dialog box is done using an object of the class dbox. A workable
definition is given in Figure 4.7 although it is easy to see other features which
could be provided.

The layout of the dialog boxes uses some of the same TeX-style boxes as
the layout window. However, in this case the primitives are generally much
higher level objects such as scrolling lists and popup menus, and are all active,
accepting and responding to input.

An overlay is a dialog box where a selection style box with popup menu
changes the entire look of the menu (i.e. all the options change). For example,
in a tool for entering citations, changing the type of citation would change many
of the fields available for entry. The Overlay constructor generates a box for
this prime selection but does not place it. That is left for the Outer constructor,
which is only meaningful inside an Overlay data structure. Generally an Outer
constructor will appear in each of the inner dialog boxes in the same place.

A text entry field takes a boolean specifying whether it is fixed size or scrol-
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lable, an integer specifying the size of the field, a string containing the initial
value, and a list of strings which form an optional pop-up menu.

Each of these objects returns a structured value, as defined in the data type
dboxrtn (see Figure 4.7). Labels, Actives and Outers do not return a value in
this structure. Selects, Scrolls and Texts all return a string, Overlays and
Check boxes return OvRtn and CkRtn values respectively, and the boxes return
BoxRtn structures. The program which created the dialog box may break down
this structure and extract the relevant values.

4.4 Views

In order for a programming environment such as the one presented here to be
truly effective, it must provide a high-bandwidth communication path between
the user and a program. In other words, when using the environment, the user
should find that all relevant information is grouped together, and less relevant
information, when available, is placed elsewhere, but directly accessible from
the core information displayed.

Without such an environment, the user generally manipulates a program
using one tool at a time. Each tool gives the user information about a certain
part or aspect of the program, but not a complete, coordinated view of the
entire program.

The environment takes the information present in the individual tools and
combines it so that the user sees a coherent picture of the program. The method
used here to achieve this is to allow user-definable views of a collection of editor
buffers.

Each buffer has some text in it which has been generated in some way (typ-
ically this is by a user writing a program, but also by tools such as the compiler
and the debugger). In more advanced versions of the environment, the buffers
might also contain graphical images and diagrams. Such an environment could
contain all the source text for a program, the errors produced by the compiler,
the current executing state of the program, information from the debugger,
property proofs, design documents, provisional documentation, etc.

A user requests a view into this information by creating a window on the
screen and specifying the viewing function to be used and any additional pa-
rameters that may be required (in general, views will be named on creation and
most frequently asked for by name). The window is presented, and a repaint
request is sent from the UI manager to the central coordinating module. Here
a decision is made as to exactly what needs repainting, the relevant view is
recovered, and the appropriate display instructions are generated and sent to
the UI manager (merged with requests for information directed at the relevant
editor buffers).

When a change is made within a window containing a view, this change has
to be reflected not only in the view, but also in the buffer underlying the view.
For this purpose, a second function is provided which translates back from a
position in the view window into a position within the corresponding source
buffer. The writeability of any portion of a view depends upon the writeability
of the source buffer. A third function is provided which determines whether or
not a complete refresh of the screen is required when a single change is made.
These latter two functions can both be written in a general way, working off
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data generated by the original projection function.
Each view consists of a projection function, some buffers and marks within

buffers, and some maintained state information. The projection function is a
mapping from the sections of buffers and state information to a dialogue (a
function from responses to requests), e.g.

proj :: [sub-buff] -> state -> responses -> requests

The state is given by a mapping from arbitrary keys (although a special enu-
merated type would be useful) to arbitrary values.

The requests and responses are used for two purposes: firstly to collect
necessary information from the editor buffers, and secondly to display it using
calls to the user interface module. In order to improve efficiency, it might be
desirable to perform the projection initially into an editor buffer and from there
display it. Any subsequent refreshes of the window would not require a complete
reprojection of the view, although when a change was made, a full reprojection
into the buffer might be necessary.

The primary purpose of views is to allow important information from differ-
ent tools to be combined easily. However, because the text is produced by the
projection function extra text (annotations) may be slipped in. For example,
when a new buffer is used, a line could be inserted identifying the buffer, the
tool, or its status.

In order to take advantage of a single function to handle the required un-
projection operations, it is necessary to store a ‘trace’ of exactly what went
into making up the displayed view. This consists of a list of structures, each
identifying a number of characters and a region of a buffer from whence they
came. If they were added explicitly by the projection function, a distinct buffer
identifier can be used to indicate this. Working from this list, any position in
the view buffer may easily be translated back into a position in a real buffer,
and any changes made to a buffer may be easily tested to examine their impact
on the displayed view. As these occur, a partial or total reprojection may be
performed as appropriate.

4.5 Introducing tools into the system

So far only the coordinator has been presented. For the system to be of any
real use, more functionality must be provided. This could be done by writing
ever more code to fit into the coordinator’s program. However, there are three
problems with this: it requires that the functionality be provided in exactly the
same programming language; it prevents existing tools from being modified and
used; and it reduces the modularity of the system.

The alternative is to have separate tools which are controlled by the coordi-
nator. In this design, they communicate using message passing in a style similar
to that already discussed for internal requests within the coordinator. When
the central coordinating module requests a new tool to be started, the inter-
facing module will start the process and establish a two-way communications
link. Once this is done, the coordinator will start to negotiate a protocol with
the tool. The interfacing module accepts the messages from the coordinator,
translates them into a binary form for transmission, and then transmits them
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over the communication link to the tool. When the tool responds, the process
is reversed.

Each tool within the environment communicates directly only with the inter-
facing module. However, because these messages are then passed to the relevant
tool for processing, each tool believes that it is communicating with a single tool
providing the services of the entire environment.

Several stages must be performed in order to integrate a new tool cleanly into
this environment. To begin with, a tool must be provided, and given a suitable
message-passing interface understanding a relevant protocol. If necessary, a new
protocol must be devised, and the coordinator reprogrammed to understand
and negotiate the protocol, and to start off the tool. Finally, any other tools
which are affected (for example, they wish to use some new features) should be
modified.

The most difficult part of this operation is generally to provide the tool
itself. If a tool is being written from scratch, it would seem sensible to try
and make it as functional as possible, so that it fits neatly into the requests
and responses model, although this is certainly not a requirement (and any
programming language and method may be used). Once this is done, or if an
existing tool is to be used, an interface must be constructed on the tool to
communicate with the coordinator, and an interpreter for the protocol must be
implemented within the coordinator.

In order to support an entirely new form of tool, a whole new protocol needs
to be developed. However, in general it is felt that most tools brought into
the environment will communicate using one of the existing protocols. If a tool
presents some radical new functionality, then a new version of a protocol may
be necessary (for example, going from a full to an incremental compiler). A
new tool of an existing type probably still needs to get its details inserted some-
where. These changes will all have to be made to the coordinator’s program.
For early compatibility when introducing a new tool, the coordinator can ne-
gotiate a minimum protocol with it (for example, forcing a compiler capable of
incremental compilation to do full compilation).

When a new tool has been merged into the environment, existing tools will
generally be unaffected. However, if a new tool provides some new functionality
which is of use to one or more existing tools, then these tools might want to be
updated to take advantage. For example, a tool which generated line-oriented
statistics, e.g. line number, function nesting, etc.) might want updating when
a new tool was introduced offering test-coverage information. Another example
might be if a new tool required detailed structural information about a program,
then a new compiler might be required to provide this information.

4.6 Standard Tools

A wide variety of tools could be provided within this environment. Besides the
coordinator already described, at least two are undoubtedly needed: a compiler
and an executor. This section describes these two along with a simple file man-
ager. Chapter 8 describes introducing the proof assistant into the environment,
and Chapter 10 describes three other tools which are areas of current research.

A functional language compiler is provided for two reasons: it is needed to
compile the programs that run internally in the central tool; and it is required
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in any functional program development environment. Such a compiler receives
just one message in general: to compile a program, with source code included
in the message. An acknowledgement of the request is returned immediately,
and once the program is compiled, one of two messages is sent asynchronously:
either to report a successful compilation, returning the object code; or to report
failure, returning a list of errors found. Aside from the interface, the compiler
would behave much as any other functional language compiler, performing a
sequence of steps on the initial source program until appropriate object code is
produced. More advanced compilers could easily be provided: for example, an
incremental compiler, which might engage in a dialogue with the central tool
concerning which functions need to be recompiled.

An executor for user programs, very similar to that provided within the
central tool is required to execute programs generated by the compiler. How this
works depends largely on the form of the object code produced by the compiler:
for example, G-Code, as described in Chapter 3, is most easily executed using a
small, tight interpreter, such as that presented in the Appendix. The executor
takes in general two kinds of message: the first is the presentation of object
code, which replaces any function definitions previously stored in the executor,
and the second is a request to evaluate an expression, within the context of the
object code most recently presented to the executor.

A file manager is provided to allow a consistent, easily expanded interface to
the operating system filestore. This is responsible for maintaining the environ-
ment’s idea of the filestore, and should always be used in requesting the storage
or retrieval of a file. This allows tools to access the most up-to-date version of
a file if, for example, this is located in an editor buffer rather than in the file
store. More advanced versions of the file manager might provide facilities such
as those provided by SCCS [1].



Chapter 5

Extended Types

This chapter introduces extensions to the standard Haskell type system to pro-
vide a sharper system of types, which forms a foundation for the proof system
to be developed in the following chapters. The standard type system provides
a flexible means for describing values, and for grouping these together into dis-
joint sets, which makes the task of writing correct programs easier. The system
presented here extends the usual system by providing a notation in which sub-
types may be defined and manipulated. These subtypes need not be disjoint,
and set operations such as union, intersection and difference may be performed
on them. Such subtypes allow program properties to be investigated at varying
levels of granularity, according to the needs of the proof.

Sections 5.1 and 5.2 introduce the notations to describe algebraic and poly-
morphic extended types as collections of data values, analogously to the stan-
dard Haskell data definition. Section 5.3 extends the Haskell type synonym
notation to support the operations union, intersection and difference between
extended types. Section 5.4 covers the specification of the types of functions in
a sharper fashion (made possible by the use of subtypes to represent the argu-
ments and results of functions). Section 5.5 gives an algorithm which allows all
of the extended types in a system to be represented uniquely, while Section 5.6
provides an algorithm to check that the unique representations found are also
valid over infinite, as well as finite values. Section 5.7 presents a means of resolv-
ing overlapping equations in function definitions by placing restrictions on each
of the defining equations, describing the values of the free variables of the equa-
tions over which the equations are regarded as holding. Section 5.8 discusses
overloading and Haskell’s classes feature, and how these may be represented
using the extended types system.

The work in this chapter is to a large extent collaborative with my Super-
visor, Dr. Ian Holyer. It is the only part of the work described here which
had been started before I started work on my PhD in August 1988. Section
5.1 describes the basic system of extended types introducted by Holyer, and set
out in his paper [36]. Section 5.2 describes my extensions to this system to deal
with polymorphic types. The type operators described in 5.3 and the functional
notation of 5.4 also appeared in [36], as did the idea of a unique representation
of these types. The algorithms presented here however are original work. The
problems encountered with systems of types with infinite values which cannot be
correctly partitioned was mentioned in Holyer’s work, together with the streams
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example, repeated here, and the “real-world” observations about how common a
problem this is likely to be. The exact conditions under which this would occur,
and an algorithm for detecting these, are original work. The work on pattern
matching, both here and in Chapter 3, is original, although inspired by Holyer’s
comment on the desirability (for proof purposes) of having completely separate
“true equations” representing the various cases of the function definitions.

5.1 Algebraic Types

Extended types have approximately the same syntax as that of the underlying
object language. Extensions are provided to represent subtypes, and to permit
the operations of union, intersection and difference over types. Since I am
using Flair, essentially a subset of Haskell, as the object language, the syntax
of extended types mirrors the type syntax of Haskell.

Two examples of standard type definitions are presented below. The type
tree supports binary trees of integers, while the type result supports a success
or failure situation: in the successful case, a tree is returned.

data tree = Empty | Tree tree int tree
data result = Fail | Success tree

Extended types are interpreted as sets of values (domains). In this standard
case, these values are defined as all of those which match any of the patterns
in the type definition, together with the value ⊥ (which is taken to include
exceptional values, if any). For example, the above types may be viewed as
defining sets of values satisfying the equations:

trees = { ⊥, Empty, Tree t1 i t2 | t1,t2 ∈ trees, i ∈ ints }
results = { ⊥, Fail, Success t | t ∈ trees }

The presence of ⊥ in a type permits the presence of approximate values. In
addition to the values which may be given using the constructors Empty and
Tree, the value ⊥, representing an approximation to all other values is present
in the type trees. Because it is a member of the type, it may appear as a value
of type trees when a larger value is being constructed using the constructor
Tree. Consequently, there are an infinite number of partial values contained in
the type trees. An infinite value may be represented as the limit of an infinite
sequence of approximations. The set of values described by an extended type
includes all infinite values which are limits of sequences of partial values wholly
contained in the extended type. So for example, the partial values

⊥, Tree Empty 0 ⊥, Tree Empty 0 (Tree Empty 0 ⊥), ...

form an infinite sequence of approximations to the infinite value

Tree Empty 0 (Tree Empty 0 (Tree Empty 0 (Tree Empty 0 . . .)))

and since all the partial values are in the type trees, the infinite value is also.
The presence of ⊥ in the second example only permits one partial value

directly, ⊥ itself, and no infinite values, although there are partial and infinite
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values in the second type because the argument to Success may be a partial or
infinite tree.

To enable subtypes to be defined, a new keyword edata (for extended data
definition) is introduced, which describes a set of values in exactly the same way
as the standard data definition. For example, the extended data definitions:

edata emptytree = Empty
edata success = Success tree

define a type emptytree consisting just of the empty tree (together with ⊥),
and a type success, which only contains successful results, each returning an
encapsulated tree, apart from the value ⊥. These may be expressed in the set
notation used above as:

emptytrees = { ⊥, Empty }
successes = { ⊥, Success t | t ∈ trees }

If it is desired to have more direct control over the inclusion of ⊥ in a type,
an alternative extended type data definition sdata (for strict data definition)
may be used. In this case, the value ⊥ is not included in a subtype unless
the constant Bottom is included directly in the definition. For example, in the
definition,

sdata definiteresult = Fail | Success t

only the possibilities Fail and Success are acceptable definite results — it is
not possible for a definiteresult to be ⊥. This corresponds to the set of
values:

definiteresults = { Fail, Success t | t ∈ trees }

Subtypes may also be formed in which one or more arguments to one or
more constructors are subtypes of the types given in the original standard data
definitions. For example, strictly finite trees may be represented by a strict data
definition, such as that above for the type definiteresult, provided that the
arguments to the constructor Tree are restricted to being finite.

sdata finitetree = Empty | Tree finitetree int finitetree

This corresponds directly to the set of values given by the equation:

finitetrees =
{ Empty, Tree t1 i t2 | t1,t2 ∈ finitetrees, i ∈ ints }

5.2 Polymorphic Types

The previous section introduced the means by which subtypes could be intro-
duced and defined for standard algebraic types. Polymorphism provides a means
for describing a family of algebraic types using a single definition. All the types
in such a family share a common structure, the only differences being in the
types referenced in some of the patterns. These differences are indicated by
the presence in these positions of type variables in place of type identifiers. A



60 CHAPTER 5. EXTENDED TYPES

polymorphic type definition lists all the type variables it uses. Polymorphism
thus allows a family of related types to be easily and precisely defined in a single
definition. For example, the family of list types may be defined:

data list t = Nil | Cons t (list t)

As for the algebraic types, polymorphic types may be described by a set of
values: of course, since a polymorphic type represents a family of types, it must
be represented by a set of sets of values:

lists = { l1 t | t ∈ types }
where l1 t = { Nil, Cons v l | v ∈ t, l ∈ l1 t }

Subtypes of these types may be formed, which remain polymorphic in exactly
the same way as the standard type: the only difference is to the contents of the
inner sets of values. For example, the subtypes emptylist and finitelist
may be defined using the keywords edata and sdata as:

edata emptylist t = Nil
sdata finitelist t = Nil | Cons t (finitelist t)

Note that in the definition of the subtype emptylist, the polymorphic vari-
able t is never used — this set in fact contains two values ⊥ and Nil. The sets
of sets of values may be presented as before:

emptylists = { l2 t | t ∈ types }
where l2 t = { ⊥, Nil }

finitelists = { l3 t | t ∈ types }
where l3 t = { Nil, Cons v l | v ∈ t, l ∈ l3 t }

In all polymorphic subtypes, the polymorphic structure is preserved. The
type definitions have the same number of polymorphic variables, in the same
order, while the constructors have exactly the same polymorphic arguments as
in the standard definition: it is not possible to replace these with subtypes.

5.3 Type Operators

New types may be formed by performing set operations (such as union, inter-
section and difference) on existing types. This uses an extension of the type
synonym notation in Haskell. The set operations are represented by the rela-
tional operations & and | for intersection and union, and - for difference. These
operations act on existing types, and it is not possible to introduce patterns in
these equations, and it is not legal to use this notation to define one set of val-
ues in terms of itself (either directly or indirectly). For example, the types nat,
nonpos, and int represent three groups of integers. The integers themselves
(int) might be represented using the Peano axioms as:

data int = Zero | Succ int | Pred int

although this representation does not give a unique form for any given integer.
This corresponds to the set of values ints, given by:
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ints = { Zero, Succ i, Pred j | i,j ∈ ints }

The sets of natural numbers (nat) and non-positive numbers may be given
using the subtype mechanism as:

edata nat = Zero | Succ nat
edata nonpos = Zero | Pred nonpos

nats = { Zero, Succ i | i ∈ nats }
nonposs = { Zero, Pred j | j ∈ nonposs }

At the same time, this has eliminated all the non-canonical forms of the
numbers (such as Succ (Pred Zero) for Zero). The extension to the type
synonym notation allows the definition of canonical integers by forming the
union of the sets nats and nonposs. That is,

etype canint = nat | nonpos

canints = { Zero, Succ i, Pred j | i ∈ nats, j ∈ nonposs }

The keyword stype is provided analogously to the pair of keywords edata
and sdata. The difference between etype and stype is in their treatment of ⊥,
the non-terminating value. etype includes ⊥ along with the result of the set
operation, while stype does not; although obviously a type defined using stype
may still contain ⊥ if the set operation itself generates it.

Parameters to functions may be declared to belong to a specific extended
type. This is useful in proofs, where it may be desirable to restrict the set of
values over which a variable may range. The mechanism for declaring param-
eters is like that used to declare the types of functions in the object language.
In Haskell, this is the operator ::. The two kinds of declaration may be distin-
guished by examining the uses of the object being defined.

n, i :: naturals
t1, t2 :: finitetrees

search n Nil = False
search n (Tree t1 i t2) =
(n == i) | search n t1 | search n t2

search :: naturals->finitetrees->booleans

Here, the declarations of the variables appear at the top. These use the
operator :: to declare variables of a given type, and at the end, the operator is
used to assert the type of the function.

Declarations may also be made for polymorphic variables. A variable t such
as that used in the definition of list t may be given the declaration

t :: types

This notation is used, and an extension proposed, in Section 5.8.2 which
discusses a means of incorporating the Haskell class system into the extended
types framework.
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5.4 Function Types

Function types are defined using an extension of the syntax in the underlying
language. In Haskell, a function type is written as a series of type expressions
separated by the special operator ->. For example, the function mirror, which
produces the mirror image of a binary tree, is given the type

tree->tree

which means that the function takes one argument of the type tree, and pro-
duces a value of the type tree. On any other type, the result type is error.

Subtypes of function types may be defined, by extending this syntax to allow
for subtypes of arguments. In addition to the usual form t->u, the form

t1->u1 & t2->u2 & t3->u3 & ...

is introduced, where the ti are disjoint data types. This represents the set of
values,

{ f | (∀ x ∈ t1 · f x ∈ u1) ∧ (∀ x ∈ t2 · f x ∈ u2) ∧ . . . }

As with the standard type definitions, if any value v is not in the union of
the ti, then this produces the value ⊥. In general, the union of the sets of values
ti will be the same as the set t, and the union of the sets of values ui will be a
subset of the set u.

With the function mirror, given by the definition

mirror Empty = Empty
mirror (Tree t1 i t2) = Tree (mirror t2) i (mirror t1)

each case of the definition gives rise to one typing for the function. If the
subtypes of tree, emptytree and nonemptytree are defined using the syntax
in Section 5.1 as

edata emptytree = Empty
edata nonemptytree = Tree tree int tree

then the function mirror may be given the extended type:

emptytree->emptytree & nonemptytree->nonemptytree

which refines the original definition by stating that mirror will never produce
a non-empty tree from an argument which is an empty tree, or vice versa.

Functions may be declared in this style in exactly the same way as functions
are defined to have their standard types in the object language. For example,

mirror :: emptytree->emptytree & nonemptytree->nonemptytree

and, similarly, the type synonym notation may be used to define types containing
such functions:

etype treefns = emptytree->emptytree & nonemptytree->nonemptytree

It is important to note that these typings for functions are definitions, and
cannot be checked or inferred by the type system, but require definition and
proof from the user.
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5.5 Unique Representation of Extended Types

It is important to be able to determine whether two subtypes describe the same
set of values. After the process of enriching the system of types as described
above, this becomes a non-trivial task. Section 5.5.1 provides an algorithm
to enable the unique representation of algebraic types; Section 5.5.2 extends
this to handle polymorphic types; and Section 5.5.3 shows how these unique
representations for data types allow the unique representation of the extended
function representations given above.

5.5.1 Algebraic Types

In a system of Extended types, or E-types, it is possible for two or more types
to overlap, that is, for there to be one or more values which appear in more than
one E-type. Indeed, in a limited this way this also occurs with the standard
Hindley-Milner type system, since ⊥ appears in all types, and the empty list
appears in all of the polymorphic list types. Since E-types are sets of values,
these overlaps may be expressed as intersections between the sets. It is highly
desirable that there be a unique representation for all the defined subtypes, since
this makes it possible to tell when two types describe the same set of values. A
representation which makes it easy to test whether or not two subtypes intersect,
and, if they do, what values are in the intersection, is even more desirable.

Such a representation is described in [36]. Each type in the system is rep-
resented as a union of one or more smaller types. These smaller types, called
base types are the smallest intersections of the defined subtypes and partition
the value space, that is: firstly, any given value will be a member of at most
one of them; and secondly, their union is the same set of values as the union of
the original types. This representation in fact has limited problems with infinite
values in some cases: this problem is addressed in Section 5.6.

Finding these base types in the general case is quite complex. The algorithm
described in [36] demonstrates that an algorithm is possible, but is not efficient
enough to be used as an implementation. A more efficient, practical, algorithm
is presented here1.

The following definitions present five subtypes: the natural numbers, repre-
sented by the standard Peano representation; the non-positive numbers (or neg-
ative naturals), represented analogously; the integers, represented as a union of
the naturals and non-positives; finite lists, defined in the standard way, without
any special syntax; and trees, as presented earlier (note that Nil is used both
for the empty list and the empty tree). These are all defined as subtypes of a
single standard data definition.

data val =
Zero | Succ val | Pred val |
Nil | Cons val val | Tree val val val

sdata nat = Zero | Succ nat
sdata np = Zero | Pred np
stype int = nat | np
sdata list = Nil | Cons int list

1Complete Miranda code for this is presented in the Appendix
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Bottom

Tree tree int tree Cons int list

Nil

Succ natPred np

Zero

Figure 5.1: Intersections between types

B6 = FFFTF

B3 = FFFFT B2 = FFFTT

Bottom

Tree tree int tree Cons int list

Nil

Succ natPred np

Zero

B1 = TTTFF

B4 = TFTFFB5 = FTTFF

Figure 5.2: Base types from Figure 5.1

sdata tree = Bottom | Nil | Tree tree int tree

Figure 5.1 shows the arrangement of these values in the form of a Venn
diagram, and Figure 5.2 shows the base types for this system which are to be
found by the algorithm.

As described above, each of the original types declared in the system may be
expressed as a union of base types. The base types may be expressed as the union
of a collection of patterns, as with standard definitions. Alternatively, they may
be represented uniquely as intersections of the original types and their comple-
ments. In this representation, for each of the original types, either the original
type or its complement appears. For example, the base type B2 (see Figure 5.2) is
represented by the intersection (-nat)&(-np)&(-int)&(list)&(tree). Since
this representation is very stylised, it is easily represented as a list of boolean
values: True represents an intersection with the original type; False represents
an intersection with its complement. To make the representation unique, the
same order is always used, although which order is not important. Here I will
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use the order in which the types are written above. The type B2 is thus reduced
to FFFTT. The algorithm finds all the non-empty intersections of this form, using
what amounts to a fixpoint method. Because there are n types, each of which
may be included or excluded in any base type, there must be 2n such sets in
total, although only a small number are typically non-empty.

Initially, the only known base type is the peripheral type, consisting of all
the values not in any of the subtypes (represented by a list consisting entirely
of False: the type B0 in Figure 5.2, FFFFF). This type includes all the values
which are in the standard type, but not in any of the subtypes.

The algorithm proceeds by attempting to construct values using the con-
structors in conjunction with the currently known base types, and testing these
values for membership in the original types. The resulting lists of membership
tests gives rise to new base types. The collection of base types is extended until
no new ones can be found.

The simplest case is for constant patterns which consist only of single con-
stant constructors. For each type which is directly defined in terms of patterns,
a simple test is used to determine whether or not the constructor is included
in the definition. If included, then the original type is used in the intersection;
otherwise, the complement is used. Once this has been calculated for all the
directly defined types, the intersections may be calculated for the types defined
in terms of other types. The order in which this is performed is important,
since the derived types may form a dependent hierarchy (although cycles are
not permitted).

In the example, the constants are Zero, Nil, and Bottom (across the top in
Figures 5.1 and 5.2). Zero is in the types nat and np, Nil is in list and tree,
and Bottom is in tree. This gives rise to the base types

B1 TT?FF Zero
B2 FF?TT Nil
B3 FF?FT Bottom

The values for int can now be calculated as nat | np, where nat is the first
column and np is the second, which produces

B1 TTTFF Zero
B2 FFFTT Nil
B3 FFFFT Bottom

Non-constant patterns consist of a constructor applied to a fixed number
(the arity of the constructor) of type arguments. The original type definitions
contain patterns involving the original types. Each pattern represents a set of
values, and it is possible to create a pattern by applying a constructor to base
types, instead of to original types. The set of values represented by such a
pattern is given by considering the base types as intersections of the original
types. If the values given by a pattern form a subset of the values of an original
subtype, the pattern is said to intersect with that original type. Any given base
pattern may be tested to see if it intersects with each of the original types in
turn. Such a sequence of tests produces a sequence of boolean values, which
constitute a base type: the one containing the values in the base pattern.

It is, however, not possible to determine the set of values given by a base
pattern directly. Instead, it may be determined whether or not a given base
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pattern intersects with a given original type by testing to see if it matches
one or more patterns in the original type. A base pattern matches an original
pattern if:

i the constructors of original and base pattern are the same; and

ii for each argument bi in the base pattern, and corresponding argument ti
of the original pattern, the element of bi — a sequence of booleans, one
for each original type — corresponding to the type ti is True.

In order for all base types to be found, all possible combinations of base types
and constructors must be tried. These are easily generated. In the example,
there are four non-constant constructors (Succ, Pred, Cons, Tree) and three
base types so far (ignoring B0, which will never appear in a successfully matched
pattern). This gives a total of 42 base patterns to be generated, which are

Succ B1; Succ B2; Succ B3
Pred B1; Pred B2; Pred B3
Cons B1 B1; Cons B1 B2; ... Cons B3 B2; Cons B3 B3
Tree B1 B1 B1; Tree B1 B1 B2; Tree B1 B1 B3;
...
Tree B2 B1 B1; Tree B2 B1 B2; Tree B2 B1 B3;
...
Tree B3 B3 B1; Tree B3 B3 B2; Tree B3 B3 B3;

The matching process produces the following results for the patterns with
constructor Succ or Pred, where results in no original type give rise to the
peripheral type B0:

Succ TTTFF matches Succ nat, Succ np, Succ int
in nats producing TF?FF

Succ FFFTT matches Succ list, Succ tree
in no original type

Succ FFFFT matches Succ tree
in no original type

Pred TTTFF matches Pred nat, Pred np, Pred int
in nps producing FT?FF

Pred FFFTT matches Pred list, Pred tree
in no original type

Pred FFFFT matches Pred tree
in no original type

Again, the boolean operation defining int can be applied to the new base
types, giving the two new base types:

B4 = TFTFF
B5 = FTTFF

The base patterns which match for the constructors Cons and Tree are (with
patterns generating the peripheral type B0 = FFFFF omitted):
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Cons B1 B2 matches Cons int list
in lists producing FF?TF

Tree B2 B1 B2 matches Tree tree int tree
in trees producing FF?FT

Tree B2 B1 B3 matches Tree tree int tree
in trees producing FF?FT

Tree B3 B1 B2 matches Tree tree int tree
in trees producing FF?FT

Tree B3 B1 B3 matches Tree tree int tree
in trees producing FF?FT

Again applying the boolean expression for int gives rise to:

B6 = FFFTF
B3 = FFFFT

where B3 is the same base type as generated above by the constant Bottom.
These base types B0–B6 are those indicated in Figure 5.2.

Repeating this algorithm to use all the new combinations of base patterns
(805 in total) yields no new base types, and the algorithm terminates, having
found all the base types in this system.

B0 = FFFFF = (-nat)&(-np)&(-int)&(-list)&(-tree)
B1 = TTTFF = ( nat)&( np)&( int)&(-list)&(-tree)
B2 = FFFTT = (-nat)&(-np)&(-int)&( list)&( tree)
B3 = FFFFT = (-nat)&(-np)&(-int)&(-list)&( tree)
B4 = TFTFF = ( nat)&(-np)&( int)&(-list)&(-tree)
B5 = FTTFF = (-nat)&( np)&( int)&(-list)&(-tree)
B6 = FFFTF = (-nat)&(-np)&(-int)&( list)&(-tree)

Once all the base types have been found in this way, each of the original
types may be represented as a union of these base types. The representation of
base types as intersections between the original types gives an easy method of
deducing which base types are to be combined to form the union for each type
— it is exactly those which have a positive intersection for that original type. If
the boolean representation is viewed as a matrix, the transpose of this matrix
gives the unions very easily, where now True is interpreted as meaning that a
base type is part of the union, and False is interpreted as meaning that the
base type is not part of the union.

nat = FTFFTFF = B1 | B4
np = FTFFFTF = B1 | B5
int = FTFFTTF = B1 | B4 | B5
list = FFTFFFT = B2 | B6
tree = FFTTFFF = B2 | B3

This representation makes it very easy to deduce the desired properties of
types, for example, the intersection of and differences between two types.

The performance of this algorithm is easy to improve in a limited way. A
large number of checks can be avoided for each pattern where the constructor
is not in the original type being tested. As the algorithm has been described,
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k :: types

data val k =
Zero | Succ (val k) |
Nil | Cons k (val k) | Tree (val k) (val k) (val k) |
Leaf k | Branch (val k) (val k)

edata nat k = Zero | Succ (nat k)
edata list k = Nil | Cons k (list k)
edata tree k = Nil | Tree (tree k) (nat k) (tree k)
edata ptree k = Leaf k | Branch (ptree k) (ptree k)
edata leaf k = Leaf k

Figure 5.3: Polymorphic type and subtypes

the same patterns are tested on every iteration, producing the same base types.
This can be avoided by constructing the patterns to be tested more carefully.

This algorithm is guaranteed to terminate. At each iteration, the number
of base types must either increase or stay the same. If it stays the same, the
algorithm terminates immediately. There is a maximum number of 2n base types
(that is the most that can be represented) where n is the number of original
types, and at least one must be added each iteration for the algorithm not to
terminate. Consequently, 2n is an upper bound for the number of iterations the
algorithm will take. Each iteration of the algorithm takes a finite number of
steps (computed as the sum of pattern numbers, where each pattern produces
ak steps, where a is the arity of the constructor, and k is the number of base
types at this iteration, bounded above by 2n). In practice, the number of of
final base types is usually small, and generally only two or three iterations are
required, so the algorithm is quite efficient.

5.5.2 Polymorphic Types

The above representation and algorithm may be easily extended to cover poly-
morphic types. The extensions all stem from two basic differences between
algebraic and polymorphic types: firstly, the presence of polymorphic variables
in the type definitions; and secondly, the fact that type variables do not behave
the same as types — specifically, subtypes cannot be formed from them.

An example type and set of subtypes is presented in Figure 5.3. The standard
data type val contains representations of the natural numbers, polymorphic
lists, and two kinds of trees (with different representations). Although both
trees appear to be polymorphic, the type tree k is in fact independent of its
polymorphic variable — the trees only contain natural numbers.

Five subtypes of val are defined, for naturals, lists, both types of trees, and
also for single-element polymorphic trees. Note that while it is impossible to
form the subtype of a polymorphic argument to a constructor, it is possible to
form the polymorphic subtype of a polymorphic type used as an argument to a
constructor.

The extended algorithm begins by discarding all the polymorphic informa-
tion in the subtype definitions: this means discarding arguments to constructors
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edata nat = Zero | Succ nat
edata list = Nil | Cons list
edata tree = Nil | Tree tree nat tree
edata ptree = Leaf | Branch ptree ptree
edata leaf = Leaf

Figure 5.4: Non-Polymorphic subtypes

B4 = FTFFFB5 = FFTFFB6 = FFFTF

B3 = FFFTT B2 = FTTFF
B1 = TFFFF

SuccConsTreeBranch

ZeroNilLeaf

Figure 5.5: Base types after application of algebraic algorithm

which are polymorphic variables, and any polymorphic arguments to types. This
produces the subtype definitions as given in Figure 5.4. It is impossible for this
process to cause any discrepancies in the definitions, since all occurrences of any
constructor must be treated equally.

The algorithm given in the previous section may then be applied to these
subtypes (since they are no longer polymorphic), which produces the base types
given in Figure 5.5.

The base types are given a polymorphic representation, where each base
type takes the same arguments as the original subtypes. The original types
may then be rewritten by the same transposition process used before. The final
base types and definitions of the original subtypes are presented in Figure 5.6.

5.5.3 Function Types

An extended notation for the representation of function types was introduced
in Section 5.4. This allows for more precise statements to be made about the
nature of a function. Suppose the natural numbers to be defined as in Section 5.3
and that the subtypes zero, nat, nonpos, positive and negative have been
defined from this (summarised in Figure 5.7).

The factorial function over natural numbers, fac may be defined as

fac Zero = Succ Zero
fac (Succ k) = mul (Succ k) (fac k)

A possible type for this function (and the one inferred by the Hindley-Milner
type checking algorithm) is int->int. Another possible type, defined by the
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B1 k = TFFFF
B2 k = FTTFF
B3 k = FFFTT
B4 k = FTFFF
B5 k = FFTFF
B6 k = FFFTF

nat k = B1 k
list k = B2 k | B4 k
tree k = B2 k | B5 k
ptree k = B3 k | B6 k
leaf k = B6 k

Figure 5.6: Final polymorphic base types and subtypes as unions

data int = Zero | Succ int | Pred int

edata zero = Zero
edata nat = Zero | Succ nat
edata nonpos = Zero | Pred nonpos
edata positive = Succ nat
edata negative = Pred nonpos

Figure 5.7: The type int and its subtypes

user in the extended system described here, is naturals->positives. This is
equivalent to another possible definition defined within the extended system,
zeros->positives & positives->positives. There is clearly a requirement
here, as for the data types, for a unique representation of the best function
type. The best function type is defined relative to the available types. With
only integers available, the typing int->int is the best function type. With the
extended type naturals, the typing nat->nat is best, and with the types zeros
and positives, the type given above is the best. The best function type is pro-
vided by considering the base types generated by the algorithm of Section 5.5.1.
This gives the types illustrated in Figure 5.8.

Each combination of base types as arguments can be considered in turn.
Since fac only has one argument, it is simply that each base type may be
considered in turn: this gives rise to an intersection of function types. The result
of the application to each type may be obtained by determining which equation
(or equations) applies for that argument, and then determining the type of the
result of that equation for an argument in the specified base type. There are
three base types which are putative arguments to fac and correspond directly to
the subtypes zero, positive and negative. The base type TTFF only matches
the pattern Zero, which is the argument of the first defining equation of fac.
Consequently, the type of fac for an argument in the base type B1 is the type of
the expression Succ Zero, which is positives which corresponds to the base
type B2. This gives the partial function typing B1->B2. The argument TFTF,
only matches the pattern Succ k, so the second defining equation applies. This
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B3 = FTFTB2 = TFTF

B1 = TTFF

PredSucc

Zero

Figure 5.8: Base types of integers

k :: types

data list k = Nil | Cons k (list k)

edata elist k = Nil
edata nelist k = Cons k (list k)

Figure 5.9: The function map and associated types

can be inductively shown to always return a positive answer (both arguments to
mul must always be positive), so the resulting base type is B2, giving a partial
typing B2->B2. The argument FTFT, corresponding to the type negatives, does
not match any equation, and so produces no partial typing. The full typing of
fac is thus the intersection of the two partial typings:

fac :: B1->B2 & B2->B2

fac :: zero->positive & positive->positive

Higher order functions may be handled in exactly the same way, except that,
as for polymorphism, the typing does not interfere with non-data arguments.
In this case, this means that no attempt is made to analyse by base type cases
any arguments of a function which are themselves functions (according to the
inference algorithm). This is necessary, since the representation of function
types is not itself finite (there is no finite exhaustive list of function types),
and therefore, no full representation can be given which involves listing all the
possible arguments to a higher order function. Furthermore, the data types
are broken down because they are expressed as unions of the smallest possible
types: functions are represented as intersections of larger types. As an example,
map (see Figure 5.9) is given the extended representation:

map :: ((k->k)->B1 k->B1 k) & ((k->k)->B2 k->B2 k)

map :: ((k->k)->elist k ->elist k ) &
((k->k)->nelist k->nelist k)
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5.6 Infinite Values

E-types, as described here, include total, partial, and infinite values. As ex-
plained at the beginning of this chapter, infinite values are included in E-types
as the limits of sequences of partial approximations. For example, in the defi-
nition of streams:

sdata stream = Bottom | Cons zero stream
sdata zero = Zero

The partial values ⊥, Cons Zero ⊥, Cons Zero (Cons Zero ⊥), . . . form a
sequence of partial approximations to the infinite value Cons Zero (Cons Zero
(Cons Zero (...))).

It is a requirement of the base types presented in Section 5.5 that the base
types partition the value space, so that each value is in exactly one base type.
Furthermore, Section 5.5.1 presents an algorithm for achieving this for all finite
values. However, it is possible to find type systems for which this property does
not hold for infinite values as limits of finite approximations. For example, it is
possible to divide streams into two types — those of even length, and those of
odd length:

sdata evenstream = Bottom | Cons zero oddstream
sdata oddstream = Cons zero evenstream

This represents a partitioning of streams for finite values — all streams must
be of either even or odd length. The algorithm of Section 5.5 reflects this, and
produces two base types, which correspond directly to the two types evenstream
and oddstream. There are no finite values which are in the intersection. But,
both evenstream and oddstream contain an infinite sequence of approximations
to the infinite value Cons Zero (Cons Zero ...), so the infinite value is in
both, and must be in the intersection.

{ ⊥, Cons Zero (Cons Zero ⊥), . . .} ⊆ evenstreams
{ Cons Zero ⊥, Cons Zero (Cons Zero (Cons Zero ⊥)), . . .} ⊆ oddstreams

However, the presence of infinite values is determined by the presence of an
infinite sequence of approximations, and such a sequence does not appear in the
finite intersection type, but rather, two different sequences appear, one in each
of the non-intersecting types.

The base types are correct for finite values — they are not correct for infi-
nite values. This problem could be solved by changing the way in which infinite
values are treated in this system: either they could be specifically defined and in-
cluded in various types, rather than being viewed as limits of infinite sequences;
or they could be granted exceptions to appear in more than one type.

However, such problems with infinite values are quite rare (in fact, this is
the most practical yet encountered), so rather than adjust the way in which all
infinite values are represented, it was decided to prohibit any type definitions
which gave rise to this problem. In consequence, an algorithm was needed to
find general cases of this kind.

In order to demonstrate adequately the problems encountered in trying to
detect the general case of this problem, a more complex, if unrealistic, example
is presented below.



5.6. INFINITE VALUES 73

r qq pp

B2 B2A1A1

NZ

S1 L2
L1

A1

A1

C1

C1

B2

B2

B1

B1

A2

A2

yx

t

s

r

qp

A1 A1B2 B2

s st t t

Figure 5.10: Subtypes as a graph

sdata p = Bottom | A x q
sdata q = B r y
sdata r = C p
sdata s = A x t
sdata t = Bottom | B t y | C s
sdata x = Z | S x
sdata y = N | L x y

where x and y are the familiar types natural numbers and lists of natural num-
bers. The types p, q, and r form a cycle, as do the types s and t. Among others,
the infinite value v where v = A Z (B (C v) N) appears in both types p and
s. This value is represented in Figure 5.10 together with a graph representation
of the type system.

This problem of an infinite value occurring in more than one type, but not
in their intersection is very rare, and only occurs under strong conditions:

i The graph of subtypes must contain two cycles, with specified starting po-
sitions, which match — that is, the same cyclic value may be generated by
traversing each cycle an appropriate (though not necessarily equal) num-
ber of times. The cyclic value is not complete until the original starting
positions have been reached simultaneously for both cycles.

ii ⊥ must appear at least once in each cycle.

iii At at least one point during the traversal of the cycles, ⊥ must appear in
the current type in one cycle, but not in the other.
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Figure 5.11: Cycles containing ⊥

The motivation for these conditions is that: (i) states that there must be a
single cyclic value which appears in more that one type in the system; (ii) states
that each of the values must generate an infinite sequence of approximations to
a single infinite value; and (iii) states that there is at least one infinite sequence
of approximations which will not be in the finite intersection.

An algorithm for identifying such cycles is now presented. First of all, all
cycles defined by (i) and (ii) are detected and separated into a set of separate
graphs, as in Figure 5.11, at the same time annotating all nodes which have an
edge leading to ⊥. Note that the cycles not containing ⊥ in Figure 5.10 have
been eliminated.

An exhaustive search is now possible, starting from each pair of nodes which
have matching edges leading to them, and such that ⊥ is in one node and not in
the other. In this case, this gives three possibilities: (p,s) [A2], (q,t) [B1],
and (r,t) [C1]. From here it is possible to follow the edges backwards until
there are no longer any possible transitions, in which case this pair of cycles does
not cause a problem, or until the original starting position is reached, in which
case the pair of cycles does cause a problem. This is illustrated in Figure 5.12.

This problem is very rare: most infinite values are represented by direct
cycles (such as the definitions of streams and trees). It never occurs with
standard Haskell data definitions, since these all include ⊥, and so there can
never be the necessary imbalance between two cycles. The worst case execution
time of this algorithm, an exhaustive search, is large — possibly as much as
ca.T4, where ca is the number of constructor/argument combinations, and T
is the number of types in the system. In practice, it is vastly smaller, since
virtually no starting positions for the search will be found.
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Initial Position: (p⊥,s)
A2 p⊥ ← q s ← t⊥

New Position: (q,t⊥)
B1 q ← r t⊥ ← t⊥

New Position: (r,t⊥)
C1 r ← p⊥ t⊥ ← s

New Position: (p⊥,s)
Same as original, ⊥ imbalance found --- error

Figure 5.12: Finding an inconsistency in type definitions

5.7 Equations and Restrictions

The pattern matching algorithm of Section 3.2.3 allows functions to be defined
in an ambiguous fashion: the equations of the function definition are not inde-
pendent whenever there is an overlap between the patterns used to define the
cases of the function. In the following chapters, these equations will be used
as axioms for proofs of program properties. It is therefore important that they
should be true equations. The best solution to this is to rewrite the functions
so that they are defined independently, and each rewritten equation holds over
all values of the appropriate types which match the patterns. Unfortunately,
this rewriting process changes the equations, which means that any programmer
manipulating a program using the proof system will find it different to the one
originally written.

An alternative is to associate with each equation defining the function a
restriction on the values that it may be defined over: this is in fact just an
extension to the idea that the patterns restrict the values that an equation may
be defined over. A restriction consists of a boolean expression restricting free
variables from matching certain patterns. For example, in the function min0,
defined in Chapter 3,

min0 Nil = 0
min0 l = min l

the first equation has no need of a restriction — it applies whenever the argu-
ment is Nil. The second equation however, applies in every case except when
the argument is Nil. Using the binary infix operator ~match to represent the
operation of a variable not matching a pattern, and writing boolean restrictions
in curly braces to the right of the equation, this function may be written as

min0 Nil = 0 { True }
min0 l = min l { l ~match Nil }

~match is a meta-function, that is, it is defined in terms of the value associated
with the expression on the left and a pattern to the right, rather than being
evaluated as an ordinary function.
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Using the ideas of subtypes presented earlier in this chapter, these kinds of
tests may be written more economically as type memberships. In this example,
the second test may be written as

l :: nonemptylist

where nonemptylist is the type containing only lists which are non-Nil and
non-⊥. The boolean expressions are not directly restricted in what may appear
in them — as will be seen, the general form is for a conjunction of disjunctions
— and if the object language being considered includes guarded equations, then
these may be included directly as part of the restriction. For example, the
function min0 may be defined directly (without reference to min) using guarded
equations as

min0 Nil = 0
min0 (Cons a Nil) = a
min0 (Cons a (Cons b l))
= min0 (Cons a l), a <= b
= min0 (Cons b l), otherwise

The patterns are all disjoint, so the first two equations always apply. The
third and fourth equations match the same patterns, but the free variables
are used to determine which should be used in any circumstance. The case
“otherwise” is interpreted as all other cases being False. Guards must be either
non-overlapping or must be rewritten to be non-overlapping before being used
in restrictions. The rewriting process may be done automatically, presuming
the guards are to be tested in a specific order, by adding the negation of all
the previous tests to each guard. The above equations may be rewritten with
restrictions as

min0 Nil = min0 { True }
min0 (Cons a Nil) = a { True }
min0 (Cons a (Cons b l)) = min0 (Cons a l) { a <= b }
min0 (Cons a (Cons b l)) = min0 (Cons b l) { ~(a <= b) }

The approach taken to determining such restrictions in the general case is
to use the tables constructed in Section 3.2.3 for pattern matching. It will
be recalled that a table was constructed to describe the relationship between
equations and values, and then a selection function applied to ensure that only
one equation may be applied for any given values, and that the resulting table
was used to generate pattern matching code.

The first table, generated from the patterns, describes the sets of values over
which the equations appear to be defined; the second table, used to generate the
code, describes the sets of values over which an equation is applied. It will also
be recalled that the second table is a subtable of the first: that is, no equation
may apply to any given values in the second table to which it did not apply in
the first table. It is clear that the restrictions may be characterised by being,
in some sense, the difference between the two tables.

Each entry in a table represents a particular value coverage: at the top
level, this is a direct relation between the arguments to the function, and the
constructors appearing in the coverage. In nested tables, the constructors at
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Zero Nil [2]
Zero (Cons * Nil) [3]
(Succ Zero) Nil [4]
(Succ Zero) (Cons * Nil) [4]
(Succ Zero) (Cons * (Cons * *)) [5]

Figure 5.13: Differences in coverage for function mink

Zero l 1 ->
k Nil 2 -> Zero Nil
k (Cons a Nil) 3 -> Zero (Cons * Nil)
(Succ Zero) l 4 -> (Succ Zero) Nil
(Succ Zero) l (Succ Zero) (Cons * Nil)
(Succ k) (Cons a (Cons b l)) 5 -> (Succ Zero) (Cons * (Cons * *))

Figure 5.14: Differences in coverage by equation number

each level need to be used as arguments to the appropriate constructors at the
level above to recreate the values. For example, the tables in Figure 3.11 contain
amongst others, the entries:

Table 1: Succ Cons see Table 4
Table 4: Zero * Cons see Table 7
Table 7: * * [4,5]

At the top level, Table 4 applies whenever the arguments are of the form
(Succ *) (Cons * *). Within Table 4, Table 7 applies whenever the argu-
ments are of the form (Succ Zero) (Cons * (Cons * *)), and in Table 7,
Equations 4 and 5 apply whenever the arguments are of the form (Succ Zero)
(Cons * (Cons * *)). The nesting of tables produces a tree structure, where
the leaves are always (possibly empty) lists of equations which apply to the
values as constructed from the nested contexts as shown here. In the table gen-
erated from the patterns, these lists may be of arbitrary size; in the selected
table (such as Figure 3.12) each list at a leaf is either empty or a singleton list.
The differences between the two lists may be simply characterised by a list of
pairs covering all the leaves: the first element of each pair is a reconstructed
value; the second element of each pair is the list of equations included in the
generated table but excluded from the selected table. Any leaves in the list
which have no difference between the two tables are discarded. Figure 5.13
gives the list of pairs for the function mink.

This list may be reorganised, and presented as a mapping from equation
numbers to values, as shown in Figure 5.14. Once this has been done, with the
original patterns written alongside, it becomes clear how the restrictions may
be determined.

The structure of the reconstructed values matches that of the patterns, inas-
much as the latter is defined, and the free variables of the patterns correspond
to patterns in the reconstructed values. The free variables in the values are
represented by *. The restriction on a single variable for a single value may
be represented by a negative match using the ~match operator. If more than



78 CHAPTER 5. EXTENDED TYPES

mink Zero l = Zero { True }

mink k Nil = Zero { k ~match Zero }

mink k (Cons a Nil) = a { (k ~match Zero) \/ (a ~match *) }

mink (Succ Zero) l = hd l { (l ~match Nil) /\

(l ~match (Cons * Nil)) }

mink (Succ k) (Cons a (Cons b l)) =

mink k (Cons (if (a<=b) a b) l) { (k ~match Zero) \/ (a ~match *) \/

(b ~match *) \/ (l ~match *) }

Figure 5.15: The function mink with restrictions

one variable appears in a single pattern, then at least one of the variables must
be restricted. This is represented by a disjunction of the variable restrictions.
For example, Equation 3 is restricted by the values Zero (Cons * Nil). The
patterns for Equation 3 contain two variables k and a. The restrictions on these
variables are

k ~match Zero
a ~match *

where * is a free variable, denoting any value. The second of these restric-
tions can never be true. The restriction for the whole equation, formed by the
disjunction of these is

(k ~match Zero) \/ (a ~match *)

which may be simplified to k ~match Zero.
If a single equation has more than one restricting value on it, then all of these

must be satisfied simultaneously. In Figure 5.14, two restrictions are placed on
the variable l in order for Equation 4 to hold, namely

l ~match Nil
l ~match (Cons * Nil)

Both of these must hold, and so the restriction is their conjunction,

(l ~match Nil) /\ (l ~match (Cons * Nil))

The complete set of restrictions for mink is presented in Figure 5.15. The
program fragment “restrict.m” in Appendix C provides an algorithm within the
context of the compiler of Chapter 3 for generating such restrictions.

The addition of these restrictions may be thought of as a program trans-
formation, which leaves the function unaffected, and preserves the function’s
termination conditions.

5.8 Overloading and Classes

So far, extended types have been considered as subtypes of types defined us-
ing the standard data definitions. Overloading may be viewed as representing
super-types as well. This is discussed here by extending the notation to cover
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unions of standard types as well as unions of subtypes. The use of overloading
should fit in with the mechanism provided in the object language. Unfortu-
nately, this is not yet fully defined. Section 5.8.1 introduces overloading and
overloaded functions, while Section 5.8.2 discusses how the features of poly-
morphism and overloading may be combined to model the classes system in
Haskell.

5.8.1 Overloading

Overloaded functions can be represented easily within this type system, since
all function types are represented as a union of base types resulting from the
application of each possible combination of base type arguments. As an exam-
ple, consider overloading the function reverse to apply both to (finite) lists
(inverting their order), and to (finite) trees (forming their reflection).

data nat = Zero | Succ nat
data list = Nil | Cons nat list
data tree = Leaf nat | Branch tree tree

n :: nat
l :: list
t1,t2 :: tree

reverse Nil = Nil
reverse (Cons n l) = join (reverse l) (Cons n Nil)

reverse (Leaf n) = Leaf n
reverse (Branch t1 t2) = Branch t2 t1

The base types produced by the given set of data declarations is exactly the
set of initial types, together with the peripheral set B0 = FFF. The Hindley-
Milner algorithm would reject this function normally, but might be extended to
handle union types and then would produce the type

(list|tree)->(list|tree)

It is possible to do better than this however, since the type of the result
always matches the type of the argument, something not specified by the above
type. Analyzing the four cases of the definition of reverse give rise to the four
types

list->list
list->list
tree->tree
tree->tree

All other type combinations produce an error, that is:

nat->B0
B0->B0

which gives a complete type signature for the overloaded reverse of
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list->list &
tree->tree &
nat->B0 &
B0->B0

This is not type correct in Haskell, which does not permit functions to have
arguments which are union types, and the only means of supporting overloading
is through classes (see Section 5.8.2). However, because of the extended type
representations for functions, the type of this function is conceptually no more
complex than those for map given above on Page 71.

5.8.2 Classes

Classes are a recently introduced feature of Haskell, and are the subject of sep-
arate ongoing research. A class in Haskell is a means of grouping together a
collection of distinct types which, nevertheless, have some features in common,
and provides a means of treating these features systematically. Specifically,
classes in Haskell provide a means to control the overloading of operators. For
example, the class Eq in Haskell covers all the types for which an equality op-
erator is defined. When a new type is added, it may be added to this class by
providing a suitable definition of the equality operator.

data tree = Nil | Tree tree int tree

instance (Eq tree) =>
(==) : eqtree

eqtree Nil Nil = True
eqtree (Tree t1 i t2) (Tree t3 j t4) =

i == j & eqtree t1 t3 & eqtree t2 t4

A class instance gives rise to a dictionary of functions: the keys are the
standard names for the functions (e.g. ==), while the values are the individual
defining functions (e.g. eqtree).

A function signature may indicate that a function may act on values of
any type which belongs to a given class. For instance, the function quicksort
requires that the relations equality (==), less than (<), and greater than (>) be
defined over the type of the elements to be sorted. This is indicated by the class
Order, which includes all types which are ordered.

quicksort :: [Order t]->[Order t]

quicksort Nil = Nil
quicksort (Cons x Nil) = (Cons x Nil)
quicksort l =
quicksort less ++ eqs ++ quicksort more
where
less = filter (<mid) l
more = filter (>mid) l
eqs = filter (==mid) l
mid = l!(#l/2)
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Any type which is an instance of the Order class may then use the quicksort
algorithm, and appropriate functions will be used in place of <, >, ==. The dic-
tionary of function definitions is passed as an extra argument into any function
that requires it. The semantics of functions defined in this way is entirely depen-
dent on the evaluation process. Current research is directed toward simplifying
and extending the class system, and giving it a semantics independent of the
evaluation process.

Classes may be modelled in the extended types system given here by the use
of polymorphic variables restricted to a specified collection of types. By itself,
this only enables the type to be defined: implementation is discussed later. It is
possible to collect all relevant instance declarations into a single definition, for
example:

class numericals = { ==,+,-,*,/,<,> } { int, float, complex }

might be used to indicate that a class numericals, consists of the instance types
int, float, and complex, and that the operators shown are overloaded by being
defined on all of these types.

As described in Section 5.8.1, overloading may be implemented by typing
a function as a mapping between union types, or as the intersection of several
mappings between single types. The latter typing,

list->list &
tree->tree

may be rewritten as

∀ p ∈ { list, tree } · (p→ p)

Here p is a type variable ranging over the types lists and trees, and so the
function type is a restriction of a true polymorphic function which has the type

∀ p ∈ types · (p→ p)

So reverse may be given a typing in the class system as follows:

class lt = { reverse } { list, tree }

reverse :: lt->lt

In Haskell, the class mechanism requires that the functions be defined sepa-
rately to enable the inference algorithm to work. Using overloading as described
in Section 5.8.1 using user-supplied function types, one function definition is suf-
ficient, with a variety of cases to handle all the types.

In the same way that functions may be typed with polymorphic variables,
they may be typed with restricted polymorphic, or class, variables. For example,

lt = class { reverse } { list, tree }
k :: lt
s :: k

palin s
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= True, reverse s == s
= False, otherwise

palin :: k->bool

defines the class lt as above, with the overloaded function reverse. A class
variable, k, is used to provide a type for the argument to the function palin.
The function palin determines whether the object passed in as argument is
palindromic. It is given the extended function type k->bool. In Haskell, it
would be given the type (Lt k)=>k->bool.

This idea may be extended by using class variables as arguments to poly-
morphic types, for example, in the function doublelist:

k :: numericals
n :: k
l :: list k

doublelist Nil = Nil
doublelist (Cons n l) = (Cons (n+n) (doublelist l))

doublelist :: list k->list k

Since k is a polymorphic variable restricted to numeric types, the operator
+ is valid over any two values of type k. This extends polymorphism by allow-
ing functions to “look inside” the elements of lists when the polymorphism is
constrained by the class system. However, the value of this extension, and the
consequences of it, are as yet undetermined.



Chapter 6

Proof in a Functional
Language

The primary objective of this research is to produce an environment in which
functional programs may be developed, properties of such programs may be
stated, and the proofs of these properties may be constructed alongside the
development of the programs. The design of the environment for development
was described in Chapter 4; this is extended in Chapter 8 to include a tool
to assist in the construction of proofs. This chapter discusses various styles
of proof which were considered, with respect to two important criteria: how
easy a functional programmer finds it to use to prove program properties; and
how well it copes with the standard constructions of functional programs —
equations and recursion. It has been assumed that the functional programmer
will be acquainted with the principles of programming, and will have an intuitive
understanding of the meaning of programs; it seems less reasonable to assume
that the programmer has much formal training in logic or proof.

Several different logics and styles of proof were considered for use in the
environment, and compared to see how well they met the two criteria outlined
above. Section 6.1 reviews four logics, and Section 6.2 investigates five different
styles for presenting proofs. In both cases a style which is close to the underlying
functional language is sought. An additional consideration is that, since the
proofs must be checked automatically by the proof assistant, sufficient detail
must be provided in the proof to make it completely rigorous — it is not possible
to omit either steps or details concerning individual steps in the interests of
clarity, although it is assumed that many such details may be hidden from
the user by the interface provided by the proof assistant. In this chapter, all
excess detail is ignored — the general approach of each proof style is considered
adequate.

6.1 Logics

There are a large number of different logics which may be used for proof. How-
ever, most of these have been created for specific purposes by mathematicians
and are not “accessible” to programmers — the intricacies of the logic involved
make understanding, let alone creating, a proof far too complex for program-

83



84 CHAPTER 6. PROOF IN A FUNCTIONAL LANGUAGE

F → F T F ∨ F F F ∧ F F ¬ F T
F → T T F ∨ T F F ∧ T T ¬ T F
T → F F T ∨ F F T ∧ F T
T → T T T ∨ T T T ∧ T T

Figure 6.1: Interpretation of connectives for classical logic

mers without specific training. Thus the available choice of logic is dramatically
reduced, and among those discussed here there is a considerable unity — for
example, each is a variant of first order predicate logic. The differences include
the number of truth values, the meanings of the connectives and quantifiers,
and the available deduction rules.

In classical first order logic, there are exactly two truth values: true and
false. The connectives →, ∧, ∨ and ¬ are given their understood meanings in
English, and defined using tables of truth values (see Figure 6.1). The quan-
tifiers ∀ and ∃ are also given the expected English meaning, and defined by
substitution of all or at least one value into the bound expression. Indirect
proofs are permitted — to prove the existence of an object, it is sufficient to
prove it impossible for one not to exist: no actual object need ever be demon-
strated. Likewise, it is possible to show a statement true by showing that if
it is assumed false, a contradiction may be obtained, so demonstrating that it
cannot be false.

Constructive first order logic is very similar to the classical logic illustrated
above, except that indirect proofs are not permitted — specifically, to prove
the existential quantification of a statement, it is necessary to demonstrate that
there is a suitable object which satisfies the statement, and it is impossible to
prove something true simply by assuming its negation and obtaining a contra-
diction.

A three-valued logic such as that described in [39], has three possible truth
values — true, false, and unknown represented by T,F and * in Jones’ notation.
The connectives are computable — * represents the failure of an argument
to a connective to terminate. As can be seen from the tables of truth values
(Figure 6.2) the connectives ∧ and ∨ are also commutative: the computability
of the connectives, requires the arguments to be evaluated in parallel. In this
logic, the deduction theorem, that Γ, A ` B is equivalent to Γ ` A → B does
not hold. However, the three-valued logic does have the advantage of being
intuitive to programmers, who are used to computable boolean operators in
programming languages, and to the concept of non-termination.

An alternative to this approach is to use the boolean operators found in func-
tional languages directly, and then to justify the approach in terms of their non-
computable counterparts in either classical or constructive logic. This avoids
confusion between the characteristics of object-level and meta-level connectives,
since their properties, which are not classical (or constructive), are understood
by programmers. The constructors here are computable, but non-commutative
(see Figure 6.3), but may be expressed in terms of non-computable, commuta-
tive operators (such as those given in Figure 6.1) by use of a suitable translation.
For example, the operator | is given the translation into classical logic

‖ p | q ‖ =⇒ ‖ p ‖ = True ∨ (‖ p ‖ = False ∧ ‖ q ‖ = True)
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F→F T F∧F F F∨F F ¬F T
F→T T F∧T F F∨T T ¬T F
F→* T F∧* F F∨* * ¬* *
T→F F T∧F F T∨F T
T→T T T∧T T T∨T T
T→* * T∧* * T∨* T
*→F * *∧F F *∨F *
*→T T *∧T * *∨T T
*→* * *∧* * *∨* *

Figure 6.2: Interpretation of connectives for a three-valued logic

F→F T F∧F F F∨F F ¬F T
F→T T F∧T F F∨T T ¬T F
F→⊥ T F∧⊥ F F∨⊥ ⊥ ¬⊥ ⊥
T→F F T∧F F T∨F T
T→T T T∧T T T∨T T
T→⊥ ⊥ T∧⊥ ⊥ T∨⊥ T
⊥→F ⊥ ⊥∧F ⊥ ⊥∨F ⊥
⊥→T ⊥ ⊥∧T ⊥ ⊥∨T ⊥
⊥→⊥ ⊥ ⊥∧⊥ ⊥ ⊥∨⊥ ⊥

Figure 6.3: Interpretation of connectives for an interpreted logic

where ‖e‖ means the value denoted by the functional expression e, and all con-
nectives are given their standard classical (or constructive) meanings. Since no
quantifiers appear in functional languages, no quantifiers are considered to be
in the logic, although, as is normal in functional languages, all free variables
in all statements are assumed to be universally quantified. Existential quantifi-
cation may be expressed in a fashion similar to that for constructive logic, by
demonstrating a particular value for which the statement holds, which suggests
that this logic may be closer to constructive than classical logic.

The choice made for interpreting the set of truth values and connectives
was to use the functional connectives directly, defining them by appealing to
an interpretation into classical or constructive logic. No fixed set of axioms or
proof rules is defined — rather a mechanism is provided for defining any desired
axioms and rules. If these rules and axioms are constructively valid, then the
user may be considered to be working in constructive logic; likewise, if they are
valid in classical logic, the user may be considered to be working in classical
logic. Both of these are likely: rules not valid in classical logic are unlikely to
be used; the only classical rules not present in constructive logic concern the
excluded middle, which is not generally applicable when computable connectives
are being used, and proofs involving existential quantification, which is not
available as a functional connective: a statement of the form ∀x∃yp(x, y) must
be expressed as p(x, f x) where f is a function which demonstrates a suitable y
in a constructively valid fashion. The termination characteristics of the pattern
matching may be determined by examining the HESF code generated by the
algorithm in Chapter 3, and observing whether any attempt is made to head-
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evaluate a non-terminating argument.
Another consequence of this choice concerns proofs about infinite values.

One way of proving a result p(xs) when xs is an infinite value such as [1,2,3,4,5...]
is to prove p(xs) inductively for all its partial approximations ⊥, 1:⊥, 1:2:⊥,
. . . and then deduce the result for the limit. Unfortunately there are some
statements, such as ∃n.drop n xs= ⊥, which may be true for all the approxi-
mations, but not for the limit. A statement is called admissible if its truth for
a sequence of approximations implies its truth for the limit – Paulson ( [60],
section 7.3.6) gives syntactic rules which ensure that statements are admissible.
The avoidance of quantifiers suggested above may simplify this issue by making
it possible to construct a system in which all statements are admissible.

The aim of this is not to outlaw the use of quantifiers, which may be added
by the incorporation of rules into the system; rather the aim is to investigate
how far it is possible to go without them, and whether a simpler and more
uniform system can be constructed as a result.

6.2 Proof Presentation Styles

Once the logic has been chosen, the layout of the proof still needs to be de-
termined. This is done by examining various styles and comparing them on
three points of information presentation: how references to other statements,
upon which a given statement depends, are given; how assumptions are traced
through a proof, particularly where they are introduced and discharged; and
what details are missing from each of the proof steps — for example, exactly
how a rule is being applied.

To aid the presentation of the various styles, each has been used to prove a
simple property of binary trees — that reflecting a tree does not alter its size.
For this purpose, the following types and functions have been defined. Note
that for simplicity, the type has been defined strictly, so there are no partial or
infinite values, and that none of the function cases overlap.

sdata trees = Nil | Tree trees ints trees

sizeof Nil = 0
sizeof (Tree t1 i t2) =

1 + sizeof t1 + sizeof t2

mirror Nil = Nil
mirror (Tree t1 i t2) =

Tree (mirror t2) i (mirror t1)

and the property, defined using the keyword property, is:

property mirror_sizeof t = sizeof (mirror t) = sizeof t

6.2.1 Block Structured Proof Style

Here, the proof is simply a sequence of statements. The initial statements are
the axioms, deduced from the function definitions, together with axioms from
other theories, for example, number theory, and previously proved properties.
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The remaining statements are given justifications which state how they may be
verified in terms of previous statements. At any point an inner block may be
introduced, which permits the introduction of assumptions, which are only in
scope inside the block and are discharged when the result of the proof block is
used. The notation here is copied from [39]

Justifications are presented to the right of the statements. The statements
used in a justification are listed along with the justification — each statement
in the proof is given a reference number. The dependence of statements on
assumptions is highlighted by the blocks which introduce the assumptions. The
justifications lack details on the precise way in which the statement relates to
those used to justify it. This could be overcome by making the rules more
specific.

A1 sizeof Nil = 0 AXIOM

A2 sizeof (Tree t1 i t2) = 1 + sizeof t1 + sizeof t2 AXIOM

A3 mirror Nil = Nil AXIOM

A4 mirror (Tree t1 i t2) = Tree (mirror t2) i (mirror t1) AXIOM

A5 x + y = y + x AXIOM

1 sizeof (mirror Nil) = 0 EQ A1,A3

2 sizeof (mirror Nil) = sizeof Nil EQ A1,1

3 from h1, h2

h1 sizeof (mirror t1) = sizeof t1 HYPOTHESIS

h2 sizeof (mirror t2) = sizeof t2 HYPOTHESIS

3.1 sizeof (mirror (Tree t1 i t2)) =

sizeof (Tree (mirror t2) i (mirror t1)) APPLY A4

3.2 sizeof (mirror (Tree t1 i t2)) =

1 + sizeof (mirror t2) + sizeof (mirror t1) EQ A2, 3.1

3.3 sizeof (mirror (Tree t1 i t2)) =

1 + sizeof (mirror t1) + sizeof (mirror t2) EQ A5, 3.2

3.4 sizeof (mirror (Tree t1 i t2)) =

1 + sizeof t1 + sizeof (mirror t2) EQ h1, 3.3

3.5 sizeof (mirror (Tree t1 i t2)) =

1 + sizeof t1 + sizeof t2 EQ h2, 3.4

3.6 sizeof (mirror (Tree t1 i t2)) =

sizeof (Tree t1 i t2) EQ A2, 3.5

infer 3.6

4 sizeof (mirror t) = sizeof t INDUCT(t) 2,3

The block at step 3 proves the sequent:

{ sizeof (mirror t1) = sizeof t1, sizeof (mirror t2) = sizeof t2 } `
sizeof (mirror (Tree t1 i t2)) = sizeof (Tree t1 i t2)

and the induction at step 4 discharges these inductive hypotheses.

6.2.2 Tree Structured Proof Style

In the tree-structured style, each statement is placed vertically adjacent to its
antecedents: in this way, the connections between the statements involved in
the justifications are made clear. The proof is written as tiers of statements,
each being deduced from those written directly above. Assumptions are intro-
duced and discharged at various points in the tree, and it is often unclear which
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assumptions apply to which statements. Statements which are needed in more
than one place must generally be proved on each occasion. Finally, the repre-
sentation becomes unwieldy beyond a certain size of proof, and a proof needs
to be broken down into manageable sections.

M N = N S N = 0

----------------------- EQ

S (M N) = 0 S N = 0

--------------------------- EQ

S (M N) = S N
-----------------

φ

M(T t1 i t2) = T (M t2) i (M t1)

------------------------------------- APPLY

η = S(T (M t2) i (M t1))

---------------------------- EQ

x+y=y+x η = 1+S(M t2)+S(M t2)

------------------------------------ EQ

η = 1+S(M t1)+S(M t2) [S(M t1) = S t1]

------------------------------------------------ EQ

[S(M t2) = S t2] η = 1+(S t1)+S(M t2)

------------------------------------------ EQ

η = 1+(S t1)+(S t2) S(T t1 i t2) = 1+(S t1)+(S t2)

--------------------------------------------------------- EQ

ψ

φ ψ
------------------- INDUCTION

S(M t) = M t

The steps in this proof are the same as previously, but arranged differently.
Some steps which were arranged sequentially above are now laid out horizontally,
while others appear vertically. The steps which previously appeared inside an
inner block are no longer set off in any special way. The same level of justification
detail is missing from both proofs.

Either of these styles may be presented in an inverted goal-directed fashion,
whereby the statement to be proved appears at the top, and is broken down into
subsidiary statements — or goals — each of which must be proved separately.
In general, this renders the same proofs, except that the statements appear in
the reverse order, and restrictions on the style (for example, regarding referenc-
ing of statements) are reversed. This goal directed style seems more natural for
the creation of some kinds of proof, since the statement to be proved is well
known, and may be easily broken down. In practice, both forward and back-
ward construction techniques are used, and this is independent of the style of
presentation.

6.2.3 Transformational Proof Style

A system for transforming programs written in an algebraic style is given in [12]
with the intent of transforming correct but inefficient programs into efficient
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programs. It permits the defining and manipulation of functions and expres-
sions. This suggests itself as the basis of a proof system, since many of the
operations performed in functional language proofs come under the description
of transforming expressions in this way.

In general, cross-referencing is not an issue — most of the steps involve sim-
ply the previous step, and external information, such as function definitions and
theorems (or laws). When other references are required, the individual state-
ment to be referenced may be individually named and then referenced when
required by the name given. Non-transformational rules (such as induction)
tend to be included rather haphazardly, although the proofs could be organised
in a more structured fashion by lessening the importance of the ideas of trans-
formation. The rules tend to include most relevant information, except when
a mathematical law is being applied, when the way in which the law is to be
applied is generally unspecified.

The intention in this proof system is to transform one half on an equation into
the other — where this is not practical, the entire equation may be transformed
into the expression True instead.

sizeof (mirror t) DEFINE property

sizeof (mirror Nil) INSTANCE t/Nil

sizeof Nil UNFOLD mirror

NAME BASE

sizeof (mirror t) USE property

sizeof (mirror (Tree t1 i t2)) INSTANCE t/Tree t1 i t2

sizeof (Tree (mirror t2) i (mirror t1)) UNFOLD mirror

1 + sizeof (mirror t2) + sizeof (mirror t1) UNFOLD sizeof

1 + sizeof (mirror t1) + sizeof (mirror t2) LAW x+y = y+x

1 + sizeof t1 + sizeof (mirror t2) HYP mirror t1 = t1

1 + sizeof t1 + sizeof t2 HYP mirror t2 = t2

sizeof (Tree t1 i t2) FOLD sizeof

NAME INDUCTIVE

sizeof (mirror t) USE property

sizeof t LAW induction(t)

BASE, INDUCTIVE

This style is clear and easily constructed for simple proofs — in general,
the construction requires just the repeated application of a small set of rules.
The two main disadvantages are the cavalier approach to the introduction and
discharge of assumptions, and the inconsistent approach to incorporating non-
transformational rules. Transformations produce only partially correct results
and separate proofs of termination have to be added to make the approach
rigorous, particularly for recursive definitions.

6.2.4 Functional Proof Style

The desire for a notation easily accessible to functional programmers led to an
attempt to produce a notation for proofs in a functional style. The two impor-
tant parts in the exposition of proofs are the references between statements and
the introduction and discharge of assumptions. Proof rules may be expressed as
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functions mapping statements and assumptions to a new statement. A complete
proof consists of a compound function of this sort, built up from functions rep-
resenting the individual steps of the proof. The final proof somewhat resembles
the tree style of Section 6.2.2, in that the function is tree-shaped. References
are handled by “naming” each statement with a suitable function definition.
Linear sections of proof may be represented by compound functions of simple
rules, without any named functions involved. In the example below, expressions
surrounded by { . . . } are object-level expressions — other expressions are at
the meta-level.

sm ({sizeof (mirror t) = sizeof t},[])

sm =
struct_induct {t} (sbase,sind) [subst {t} {t1}, subst {t} {t2}]

sbase =
sequent [{mirror Nil = Nil}, {sizeof Nil = 0}]

sind =
eq {mirror (Tree t1 i t2) = Tree (mirror t2) i (mirror t1)} .
eq {sizeof (Tree t1 i t2) = 1 + sizeof t1 + sizeof t2} .
eq {sizeof (mirror t2) + sizeof (mirror t1) =

sizeof (mirror t1) + sizeof (mirror t2) } .
eq {sizeof (mirror t1) = sizeof t1} .
eq {sizeof (mirror t2) = sizeof t2} .
eq {1 + sizeof t1 + sizeof t2 = sizeof (Tree t1 i t2)}

The first line of this proof expresses the property as a proof rule applied to
the property expression and no assumptions. Before the function is evaluated,
the statements known to be true from the object program’s function definitions
are added to this list of assumptions. The function sm is defined as a partial
application of the rule for structural induction. An argument to sm is passed
directly to the function struct induct. The induction rule takes an object ar-
gument, a pair of functions to handle the base and inductive cases respectively,
and a list of assumptions for the inductive case. These are both introduced
and discharged in the induction rule, and are applicable only to the statements
proved by the function handling the inductive case. They are checked by the
induction rule to ensure that they represent valid inductive hypotheses. The
assumptions are curried functions to be applied to the argument to the struc-
tural induction function. In general, as here, they will be substitutions for the
inductive variable.

The base case is proved by a simple sequent — replacing appropriate terms
in the expression produces a decidably true statement. The elements of the
list presented as the first argument to sequent must be found in the list of
assumptions to the function sequent. The inductive case is proved, as in the
block structured example, by a chain of equality substitutions.

There are two major problems with this approach: firstly, although the
representation is functional, it is not a clear presentation of the proof; secondly,
although evaluation of the meta-program would seem sufficient, it is non-trivial
to design an algorithm which can automatically verify this proof in a guaranteed
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sound fashion since, for example, a rule could easily be defined not to use the
passed arguments, but rather to prove a different property to the one desired.

6.2.5 Proof by Evaluation

One other method of proof studied deserves mention in addition to the others
described above, which is important in the development of the ideas in this
section. Resolution is an automatic method of proof used for establishing the
truth of relations in the programming language PROLOG. It was found to be
unsuitable for proving properties of functional programs, mainly because of its
automatic nature — it cannot deal with free variables much better than can
the standard functional language evaluation algorithm. An attempt was made
to extend the idea of resolution to allow greater control of the process, but this
was abandoned when it became clear that it would be more sensible to attempt
the extension to the standard functional evaluation algorithm.

This presents a new view of proof — the idea that proof is just a controlled
evaluation of a property. This extends to give additional means of encouraging
programmers to engage in proof. A range of tools is provided in the workbench
for use by the programmer. Initially, the programmer constructs a program
and executes it, testing it in the usual way. A desired property of the program
is expressed, and this too is tried on a range of arguments. If the property is
determined to be false, changes are made to the program or to the property, until
it appears to be true. A debugger may be used to assist in this process. Once
the property is considered likely to be true, a proof may be attempted, based
on a trace of the execution of the property obtained from the debugger: the
step-by-step evaluation of a functional program resembles the desired structure
of the proof, with changes being made to enable free variables to appear in the
proof rather than more concrete values. Specifically, pattern matching needs to
be replaced with an argument which covers all possible cases; recursion needs to
be replaced with an inductive argument; and some of the steps rearranged and
regrouped to make for a more logical and structured presentation (something
lazy evaluation rarely is). The evaluation technique used depends on the object
language. It will be assumed here that the technique used is that described in
Chapter 3.

The presentation of this style is goal-directed and block-structured. Refer-
ences between one statement and another are made by explicitly writing the
referenced statement. Its truth may be determined by looking in a list of facts
known to be true, and assumptions currently in force. Inner blocks may be used
either to provide proofs for subsidiary goals, or to add facts to the list of those
known to be true, in preparation for a subsequent step. Assumptions may be
introduced at the start of a block, but if so must be discharged when the result
is used (this is equivalent to the deduction theorem).

The proof itself consists of the “evaluation” steps to be performed. Goal-
directed proof was chosen since this more naturally reflects what a programmer
expects from evaluation — that a more complex expression is reduced into
one or more less-complex expressions. The rules give sufficient information to
transform the expression into a simpler one, but only at the beginning is the
property actually cited. Most of the evaluation steps are reversible, so proofs of
equality follow in both directions.
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mirror_sizeof t <==
sizeof (mirror t) = sizeof t

block_to_prove
sizeof (mirror Nil) = sizeof Nil <==

unfold (mirror Nil) by (mirror Nil = Nil)

block_to_prove
sizeof (mirror (Tree t1 i t2)) = sizeof (Tree t1 i t2) <==

unfold (mirror (Tree t1 i t2)) by
(mirror (Tree t1 i t2) = Tree (mirror t2) i (mirror t1))

unfold (sizeof (Tree (mirror t2) i (mirror t1))) by
(sizeof (Tree t1 i t2) = 1 + sizeof t1 + sizeof t2)

commute_addition (sizeof (mirror t2) + sizeof (mirror t1))
use_equality (sizeof (mirror t1) = sizeof t1) in

(sizeof (mirror t1))
use_equality (sizeof (mirror t2) = sizeof t2) in

(sizeof (mirror t2))
fold (1 + sizeof t1 + sizeof t2) by

(sizeof (Tree t1 i t2) = 1 + sizeof t1 + sizeof t2)

structural induction over t :: trees, using Nil, Tree t1 i t2

This method of proof is examined in greater detail in the next chapter.



Chapter 7

The Language of Proofs

Chapter 2 introduced the functional language Flair as a simple subset of the
language Haskell. We assume here that programs written in Flair have been
processed in such a way that the defining equations of the functions have been
made separate (as explained in Chapter 3 and Section 5.7), that the standard
Hindley-Milner type algorithm has been applied to deduce the types of identifiers
in the program, and to ensure that it is type-correct, and that any processing
involving the extended types system of Chapter 5 has been performed.

This chapter describes two further extensions to the language: Sections 7.1
and 7.2 introduce a mechanism which allows proofs to be represented and stored
alongside programs; while Section 7.3 introduces a mechanism allowing the def-
inition of rules to be used in these proofs. Together these two extensions permit
the representation of a completely rigorous proof system applicable to functional
language programs.

This chapter details mechanisms for representing, storing, and automatically
checking proofs: it does not discuss how such proofs may be created or examined
by a user or programmer. Considerations for interfacing this proof system with
the environment described in Chapter 4, enabling user interaction with proofs
is detailed in Chapter 8. Chapter 9 covers the meaning of proofs, particularly
concerning the validity of proof rules as defined in Section 7.3.

7.1 The Structure of Proofs

Chapter 6 introduced the ideas of forward and goal-directed proof. In a forward
proof, each statement in a sequence follows, according to some specified proof
rule, from its antecedents, that is, the statements coming before it in the se-
quence. Ultimately, the justification of the earliest statements depends either on
their obvious truth, or their truth being determined externally to the proof (for
example, obtained as axioms or previously proved properties). A goal-directed
proof consists similarly of a sequence of statements, each of which is a goal
to be proved and is reduced to sub-goals, again according to some proof rule.
Each statement thus follows from subsequent statements, and the objective is
to reduce goals to statements which are clearly true: either directly, or asserted
by some external theory.

The mechanism presented in this chapter for the storage and manipulation

93
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of proofs does not contain an explicit statement of which proof rules may be
used for a particular application, but tries to provide a scheme within which
a wide variety of proof rules, couched in either forward or goal-directed styles,
may be provided for use, and indeed, many rules may be provided, if desired,
in both forward and goal-directed styles.

This scheme is provided by defining a proof to consist of a sequence of steps,
and introducing the notion of a current context between each pair of steps in a
proof. This context consists of a current goal and a database of known facts.
Each proof step may be either goal-directed, in which case the current goal is
reduced to a simpler one using the current database of known facts, or else,
in the forward style, a step may add a fact to the current database, usually
without changing the goal. Conceivably, a rule could simultaneously change the
goal and the known facts, but no such rules are considered here.

For a given step to be valid, it must be possible to show that a truth-
preserving relationship exists between the context prior to the step and the
context after it. Denoting the prior context by (g,F) where g is the prior
goal and F the prior database of known facts, and the consequent context by
(g’,F’), the two basic cases may be considered. For a goal-directed step, such
as that shown in Figure 7.1, the consequent goal, g’, together with the known
facts (which do not change), must imply the prior goal g.

A forward style proof step is valid, provided that the new facts can be
deduced from the existing facts. Assuming that the new database F’ = F*f,
where * is the operation of extending the fact database, and that the goal g’ is
identical to the prior goal g, we have that F`f, as illustrated in Figure 7.2.

The transformation style of proof, described in Section 6.2.3, in which an
equality may be proved by the successive transformation of one side into the
other is provided by allowing a sequence of (reversible) steps to transform one
goal into another (equal) goal. Such a transformation step may be pictured as
in Figure 7.3.

Any step may have a subproof (or sequence of subproofs) attached to it as
one or more inner blocks. A subproof is used in establishing the correctness of a
step, and allows assumptions to be added temporarily to assist the proof, thus
allowing the “natural deduction” style of proof. Such a subproof may be added
to any of the above steps, but Figure 7.4 illustrates a subproof attached to a
forward step, assisting in the proof of a new fact.

With such a range of mechanisms with which to structure proofs, there is
often a choice as to how any particular kind of proof rule should be presented.
For example, consider the rule to prove a property by induction over the natural
numbers, s(n). This must first be established for the base case, s(0), and
then for the inductive case that s(k) → s(k+1). For this, two subproofs are
required: one for each of the cases. The induction rule may be presented either
in the forward style, where each case is proved by a forward step together with
a subproof, and then the induction step can extract both from the database,
as illustrated in Figure 7.5, or in the goal-directed style, in which the main
goal is initially reduced to its two component subgoals, each of which is then
proved in an inner block, as shown in Figure 7.6. This choice of styles for proof
rules is analogous to the choice to be made when writing a functional program
between separating out support functions and giving them top-level definitions,
or including them with the function definition where they are used inside a let
or where construct.
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(g,F)
STEP valid if F, g’ ` g

(g’,F’=F)

Figure 7.1: Goal-directed proof step

(g,F)
STEP valid if F ` f

(g’=g,F’=F*f)

Figure 7.2: Forward style proof step

(g,F)
STEP valid if F ` g = g’

(g’,F’=F)

Figure 7.3: Transformation style proof

(g,F)
STEP, Proof p valid if p a proof that F ` f

(g’=g,F’=F*f)

Figure 7.4: Forward Step with Subproof

(g,F)
FORWARD STEP with subproof p, p ` s(0)

(g,F*s(0))
FORWARD STEP with subproof q, q ` s(k)=>s(k+1)

(g,F*s(0)*s(k)=>s(k+1))
INDUCTION STEP

(g,F*s(0)*s(k)=>s(k+1)*s(n))

Figure 7.5: Natural number induction in the forward style

(s(n),F)
INDUCTION STEP, subproofs p,q

p ` s(0)
q ` s(k) => s(k+1)

(True,F)

Figure 7.6: Natural number induction in goal-directed style
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property mirror_sizeof t = sizeof t == sizeof (mirror t)

mirror_sizeof t <==

{ g = sizeof t == sizeof (mirror t), F = program facts }

Figure 7.7: Statement and Start of Proof of Property

One indirect advantage of this approach, combining both forward and goal-
directed styles, is that a partial proof, in which some forward steps, and some
goal simplifications, have been done, can simply be represented as an initial
segment of a proof — reducing the need for proofs with “holes” in them.

7.2 The Representation of Proofs

This section presents a syntax for the textual representation of proofs using
the mechanisms given above, specifically for the structures of proof steps and
subproofs. This syntax is not intended to be particularly readable, since it
is assumed that examination and manipulation of proofs will take place via a
suitable interface such as that described in Chapter 8. Rather, this syntax is
supposed to allow the proof to be represented in a reasonably compact form,
which may be easily stored, transmitted, and processed by computer.

7.2.1 Representing a Proof Step

Each proof step represents a transformation from one context to another. The
initial context is defined at the start of a proof by establishing the property
to be proved, which is the initial goal, and the fact database is extracted from
definitions and declarations in the program, together with previously proved
properties, and axioms from other theories. The fact database is never stated
explicitly in the proof, and the goal is only stated initially: each proof step
describes explicitly the transformation between the context prior to the step and
the context after the step. In this way, each proof rule appears as a partially
applied function, still to be applied to its prior context in order to generate its
subsequent context.

Each proof is introduced by giving the name of the property to be proved,
together with its free variables, followed by the special symbol <==. The initial
goal is then the property referred to; the initial fact database is all the appro-
priate information as described above. This gives rise to the situation as in
Figure 7.7.

Simple rules allow for a variety of proof operations to be carried out, for
example, the substitution of a free variable in the goal. These are written as
the rule name followed by appropriate arguments, for example, the variable to
be substituted, and the expression to be substituted for it. The expression for
substituting Nil for t in the goal of Figure 7.7 is illustrated in Figure 7.8.

When representing a proof in this way, two types of symbols occur: object-
level symbols such as t and Nil, and proof-level symbols such as substitute.
Confusion between these must be avoided in a fashion consistent with the object
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{ g = sizeof t == sizeof (mirror t), F = program facts }
substitute ‘t ‘Nil

{ g = sizeof Nil == sizeof (mirror Nil), F unchanged }

Figure 7.8: The Proof Rule Substitute

{ F contains x=0, 0=y }
equality (‘x ‘= ‘0) (‘y ‘= ‘0)

{ F’ = F*x=y }

Figure 7.9: The Forward Proof Rule Equality

language. Here a backquote is used to identify all object-level symbols. When
proof rules are being defined (see Section 7.3) a greater distinction is made
between the two, but this is less clear and more verbose than quoting. Such
distinctions are not however necessary for the user, who should understand what
is meant by each proof rule, and so the quoting need not be apparent when the
proof is displayed to the user for examination or modification.

A forward proof rule may be expressed in much the same way as the goal-
directed rule substitute above. The proof rule equality takes two facts, each of
which is an equality with the same right hand side, and, if it can find the facts in
the current database, adds the fact that the two left hand sides are equal. This
is illustrated in Figure 7.9. The ordering of the equalities in the fact database
is not relevant to the working of the rule.

In addition to storing expressions, the fact database contains two further
collections of information: all the information gathered about the types in the
program, including the definitions of types and the types of the various function
and variable identifiers; and a list of identifier names indicating which identifiers
are free for substitution. Most of the type information is stored in a fashion
identical to that for storing facts, that is, as parsed expressions. The type
information is accessed as needed by the proof rules, generally in a supporting
role, for example, to check that an argument by cases has indeed covered all the
cases of a variable. The type information, in particular the very detailed type
information gained from the use of extended types as described in Chapter 5,
may play a more central role in the proofs, for example, it is possible to prove
that a function terminates by showing that its result is always in a strict type.
If it is possible to show that whenever the arguments to a function are of a strict
type, then so is the result, it may be shown that the function terminates on all
finite, total, data values. The information on variables free for substitution is
used in two ways: it enables free variables to be distinguished from constants
(such as defined functions); and it permits variables to be fixed in inner blocks
when a free variable takes on a specific notional value.

How this information is stored in the database is not described here: the
database is viewed as an object of an abstract type, accessed only through
functions such as “add a fact to the database” and “check whether this variable
is free”. It is assumed that functions exist which make it possible to check
whether any given datum is, or is not, in the database; to recover some or all of
the data of a given kind; and to identify which facts are defining equations of
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{ g = sizeof Nil == sizeof (mirror Nil) }

unfold @r1

{ g = sizeof Nil == sizeof Nil }

Figure 7.10: Unfolding a term of the current goal

functions, and which are just properties. In general, all the details of access to
the fact database are obscured behind the generalities of the proof rules, which
concentrate on the important points of each step, that is, which equations and
variables are needed to prove a particular step.

Goal-directed proof steps sometimes act on the entire expression, as in the
case of substitute above. However, it is often the case that a rule will be desired
to act on only a part of the goal, for example, expanding a term of the current
goal according to an equation in the facts database. For example, in order to
replace mirror Nil by Nil in the resultant goal of Figure 7.8, it is necessary
to specify that mirror Nil = Nil is the appropriate expression to apply to the
first argument of the expression to the right hand side of the top level expression.
To do this in a consistent way, any subterm of an expression may be referenced
by an “expression specifier” which is essentially a method of navigating the
expression tree.

All expression specifiers begin with the symbol @. On its own, this represents
the entire current goal. If followed by a single-digit number, this represents an
argument position in the expression, where 0 is the function symbol, 1 is the
first argument, and so on. If an operator is written infix, 0 is the operator, 1
is the leftmost argument, etc. For binary operators, the letters l and r may be
used for the left and right hand arguments of the operator respectively: these
are in fact, exactly identical to 1 and 2. If a function should have more than
nine arguments, the subsequent arguments may be referenced by writing the
appropriate multi-digit number in angle brackets, e.g. <13>. Again, the proof
assistant should provide adequate means for correctly identifying any desired
sub-expression, thus relieving the user of dealing with this notation directly.

Figure 7.10 illustrates the use of the unfold rule on the resultant goal of
Figure 7.8 to replace mirror Nil with Nil. unfold takes the left hand side of
a defining fact, and recovers the right hand side from the facts database.

7.2.2 Cross-Referencing

In traditional forward style proof, such as the block-structured style of Sec-
tion 6.2.1, each statement is numbered and the justification of each step refers
to the numbers of those statements from which it follows. This is appropriate
for short, self-contained proofs, but is less appropriate for longer proofs, and is
inappropriate for the kinds of proofs described here, in which statements need to
refer not only to other statements, but to information abstracted from the pro-
gram under consideration, together with a database of properties, for example,
from theories appertaining to the data being considered.

In general, facts are stored in a database and may be extracted using one of
several ways of searching to match one or more facts against a description. This
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description will often be a complete statement of the fact, exactly as it appears
in the database, for example, the fact x=0 from Figure 7.9. Alternatively, it
may be approximately that given in the database, for example, the fact y=0
in Figure 7.9. Another possibility is that only a small amount of information
is given, but the search is greatly restricted — for example, limited only to
defining equations — so that the information given is sufficient to recover the
entire fact from the database. Previously proved properties may be recovered
by citing the name of the property rather than the expression of the property,
for example, using the name mirror sizeof t in place of a full statement of
the property.

It is not always necessary for the user to provide the facts to be checked in
the database. In a complex proof rule the statements to be checked may be
automatically generated by the proof rule, and these checked for inclusion in
the database. For example, the forward version of natural number induction,
nat-induct s(n), can automatically generate the two statements s(0) and
s(k)=>s(k+1) required for valid natural number induction, and check for their
presence in the database of known facts before adding the new fact s(n).

7.2.3 Inner Blocks

Inner blocks are attached to individual proof steps and contain subproofs. They
are introduced with a syntax analogous to that for introducing top-level proofs
of properties, that is, a rule together with arguments is presented, followed by
the special symbol <==, and then subsequent lines contain an indented inner
proof. If more than one subproof is to be attached to a single proof step, then
the symbol <== must appear between the subproofs.

The way in which an inner block is used depends upon the rule to which it is
attached. The rule provides the inner block with its own distinct (and usually
different) context: frequently assumptions may be added for the duration of the
inner block, which are placed in the inner fact database, but not in the outer.
Once a subproof is complete, the initial and final inner contexts may be used to
modify the outer context. For example, a skeleton proof of goal-directed natural
number induction is presented in Figure 7.11. The initial goal s(n) is proved
using natural number induction over n, which has two cases, and one subproof
corresponding to each case. The first is the proof for the base case, s(0); the
second is for the inductive case. In the inductive case, the assumption s(k) is
added to the database of facts, k is fixed so it may not be used in substitution,
and the goal is set to be s(k+1). If both goals are successfully reduced to True,
then the outer goal may be likewise reduced by the induction law.

7.2.4 Extended Example

Section 6.2.5 gave an outline proof of the property mirror sizeof t in this
style. This is reworked here in detail, and the complete proof appears in Fig-
ure 7.12. This proof uses the forward structural induction rule over the type
trees. This requires all the cases for the type trees to be covered, and suitable
facts to be included in the database. The two subproofs prove the cases Nil
and Tree t1 i t2 respectively. Since trees is a strict type, a case proving ⊥ is
not required. Each subproof consists of a sequence of reversible steps for trans-
lating the expression sizeof (mirror t) into sizeof t, after the appropriate
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{ g = s(n) }
nat-induction ‘n <==
{ g’ = s(0) }
...

{ g’’ = True }

<==
{ F’ = F*s(k) }
{ F’’ = F*fix k }
{ g’ = s(k+1) }
...

{ g’’ = True }

{ g’ = True }

Figure 7.11: Goal-directed natural number induction

substitution for t. The second block makes use of the two inductive hypotheses
for the non-empty case, which are stored along with the resulting equivalence in
the fact database, and are discharged when the induction rule is applied. The
final step of the outer proof checks that the current goal is True.

The rule unfold, as described above, replaces the left hand side of the ap-
propriate definition with its right hand side, operating on the specified subex-
pression of the current goal. The rule add comm, applied to a sub-expression
of the current goal, checks that this sub-expression is of the form x+y, and re-
places it with the expression y+x. The rule for equality substitution, eq, finds
an equation in the fact database, l=r, one of whose sides matches the cited
sub-expression, and then replaces the subexpression with the other side of the
equation. The rule def fold takes two arguments: the sub-expression to be
considered, and the left-hand side of a definition, whose right hand side corre-
sponds to the given sub-expression, that is, if the second argument to def fold
were to be unfolded, the result would be the cited sub-expression.

The rule for structural induction takes an expression and a variable in the
expression over which to induct. It examines the fact database for the appro-
priate type definition, and then checks that all the cases have been covered,
generating inductive hypotheses as necessary to discharge assumptions in the
inner blocks. If valid, it adds the equivalence of the initial and result expressions
to the fact database.

The rule comp id checks that two halves of an equality expression are com-
putably identical: to do this, both sub-expressions have to be the same, and
the fact database must contain sufficient type information to deduce that the
expressions to be used will terminate. Here, this is guaranteed by the assertion
that the trees are finite.

7.3 Defining Proof Rules

The proof rules are defined as context-transforming functions. Each is passed
arguments, most of which are determined by the needs of the function: it is
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mirror_sizeof t <==

block_to_prove (‘sizeof (‘mirror ‘Nil) ‘== ‘sizeof ‘Nil) <==
unfold @l1
unfold @l
unfold @r
comp_id

block_to_prove_hyp
(‘sizeof (‘mirror (‘Tree ‘t1 ‘i ‘t2))

== (‘sizeof (‘Tree ‘t1 ‘i ‘t2)))
[ (‘sizeof (‘mirror ‘t1) ‘== ‘sizeof ‘t1),

(‘sizeof (‘mirror ‘t2) ‘== ‘sizeof ‘t2) ] <==

unfold @l1
unfold @l
add_comm @lr
eq @lrl (‘sizeof (‘mirror ‘t1) ‘== ‘sizeof ‘t1)
eq @lrr (‘sizeof (‘mirror ‘t2) ‘== ‘sizeof ‘t2)
def_fold @l (‘sizeof (‘Tree ‘t1 ‘i ‘t2))
comp_id

struct_induct @ [‘t]
assert

Figure 7.12: Complete Proof of mirror sizeof t
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P <==
A p q
B r s t
C v
D x y

proof = D x y [] (C v [] (B r s t [] (A p q [] (g,F))))

Figure 7.13: Proof as a Compound Function

these arguments which have been described above for each rule. However, each
is also passed two additional arguments, not expressly indicated in the proof
step. The first of these is a list of inner subproofs, which is usually empty; and
the second is the context before the rule is executed. The result of a proof rule
function is a new context. An entire proof can be viewed as each proof step
applied to the resultant context of the previous step as pictured in Figure 7.13
(which is similar to the idea of functional proof of Section 6.2.4). Checking
a proof thus consists of creating an initial state and applying the appropriate
compound function, representing the entire proof, to this state, then checking
that the final state is satisfactory. The language used to define these proof rules
is intended to be similar to the object language being used, although definitions
of proof rules are kept separate from other parts of an object program. Some
special types, functions and conventions are included in the language as required
by the proof rules.

It is assumed that any proof rules included in the proof system will be sound.
This is discussed fully in Chapter 9. It is assumed further that the design of
proof rules is a specialised activity (partly because of the necessity of checking
soundness) and that, in general, programmers will not write their own proof
rules, but will have access to a large library provided by specialists.

7.3.1 The Language of Proof Rules

Proof rules are defined in a functional language, and so the standard object
language needs to be enriched by the addition of some data types, functions and
conventions. The most important data types are those to handle expressions,
literals, specifiers, proofs and contexts. Expressions are represented as trees of
literals, where a literal is an identifier, number, or symbol in the object language
(preceded by a backquote in textual proofs). Specifiers consist of a list of
numbers after being parsed, each number indicating the argument position of
the desired sub-expression in the top-level expression. Proofs are a function
type from contexts to contexts. A context is a pair consisting of a goal expression
and a fact database. Fact databases are an abstract type. Contexts are defined
as a pair: the goal and database of known facts.

data expr = Expr literal [exprs]
data literal = Lit [char]
data specifier = Spec [int]
type proof = context->context
data context = Context expr factdb
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abstract factdb = ...

Proof rules may be mixed with other supporting functions (for example,
standard functions such as take and map), but may be distinguished by their
type signatures. A proof rule must have arity at least two, and the type must
end [proofs]->contexts->contexts. Proof rules may freely call other proof
rules or support functions as necessary. A subproof may be used by extracting
the appropriate function from the list passed in and and applying it to a context
defined within the rule. The result of this application is a new context which
may be subsequently examined by the rule.

Only one extension is added to the underlying language in this design: this
relates to the pattern-matching of expressions. To avoid complications in defin-
ing proof rules, whenever an argument of type specifiers is passed to a rule
expecting an argument of type exprs (or if nested inside a larger expression),
the appropriate sub-expression is recovered from the goal passed in with the cur-
rent context and used instead. In fact, this can be arranged during compilation
and type checking, so that only the actual extraction takes place at run-time,
needing no modifications to the run-time code: of course, this requires modifi-
cations to be made to the compile-time code. The reverse is not permitted: if a
specifier is required by a function or rule an arbitrary expression is not allowed.
A function exists for the recovery of any desired sub-expression of any desired
expression for use within a rule.

The fact database is an abstract type. The interface to it is through a
number of functions for performing specific operations, for example, recovering a
definition which matches a particular left-hand side, checking whether a variable
is free for substitution, or recovering all the patterns used to define a type. These
functions are always passed the fact database as their final argument, preceded
by the arguments necessary for performing the operation. The database may be
updated by using appropriate functions, for example, adding a new fact, which
return a copy of the new database. Of course, both old and new databases may
be stored alongside each other, and indeed, nested proofs usually take advantage
of having two databases: one includes temporary assumptions; the other is only
updated when the subproof is finished.

7.3.2 Examples

A few examples of the definition of proof rules will be presented here. These
are some of the rules used in the proof of mirror sizeof t in Section 7.2.4.
The simplest of these is the rule add comm, which takes one argument, apart
from the (empty) list of sub-proofs and the initial context, which identifies the
sub-expression to be considered.

add_comm (Spec s) [] (Context g f) =
Context (replace_subexp g s (Expr (Lit "+") [r,l])) f

(Expr (Lit "+") [l,r]) = extract_subexp g s

This example, like the others in this section, is not presented entirely in
the sublanguage: the more convenient notations for lists (such as displays) are
used in place of constructor notation. The two functions extract subexp and
replace subexp, find and replace specified parts of an expression. A failure in



104 CHAPTER 7. THE LANGUAGE OF PROOFS

the evaluation of a rule (for example, the error missing case) causes the proof
to be abandoned as incorrect. Assuming that the desired sub-expression may
be found, and is of the right form, the commuted form is then substituted for
it in the goal in the resulting context. The fact database f is neither used nor
modified in this rule.

The equality rule takes two arguments apart from the standard ones. The
first is a specifier indicating which sub-expression is to be acted upon, the second
is an equality fact to be used in modifying the sub-expression. The abstract
function check fact is used to ensure that the specified fact is indeed in the
fact database. The function assert checks that its first argument is True, then
returns its second argument.

eq (Spec s) (Expr (Lit "==") [l,r]) [] (Context g f) =
assert chk (Context (replace_subexp s (Expr r)) f)

chk =
extract_subexp g s == l & check_fact (Expr (Lit "==") [l,r])

The unfold rule searches the fact database for a fact which is a definition and
matches the given definition. It then replaces it with the matching right hand
side, instantiated to correspond to the left hand side. The abstract function
get lhsdefn which searches the fact database returns a left and right hand
side, together with an appropriate substitution. The support function subst
performs the substitution.

unfold (Spec s) [] (Context g f) =
Context (replace_subexp g s (subst r sub) f

(l,r,sub) = get_lhsdefn (extract_subexp g s) f

The rule block to unfold hyp uses a sub-proof to establish its desired equal-
ity. A new context is created for this inner block, incorporating the given hy-
potheses and the specified goal, and the resulting context extracted after the
proof has been followed. A new fact is then added to the original fact database,
and this returned with the original goal as the resultant context.

block_to_prove_hyp ex hs [p] (Context g f) =
assert (inng == Expr (Lit "True") [])

(Context g (add_fact newf f))

(Context inng innf) = p (Context ex (add_fact_list hs f))
newf = Expr (Lit "_deduct") (hs++[ex])



Chapter 8

Proof Assistant

Kernighan and Plauger [43] state that a major problem with software devel-
opment is controlling complexity — minimising side-effects between modules,
and restricting the detail from any one portion of the program from affecting
other parts of the program. Without machine assistance, it is unlikely that
programmers would regularly attempt proofs of program properties — the de-
velopment of such proofs is not particularly difficult, but it is tedious — mainly
because the proof, once complete, must be verified to be of any value. This
is another time consuming and error-prone task, but one which can be easily
machine supported.

Chapter 4 introduced the idea of a functional program development environ-
ment, and how it could be organised into a coordinated collection of cooperat-
ing tools. These tools support the spectrum of activities involved in developing
functional programs, from design, through coding, testing, and debugging, to
program verification and documentation. Chapter 4 only presented four tools
within this environment; many more are possible. This chapter introduces a
tool to assist with the verification, examination and creation of proofs of pro-
gram properties. The creation of program properties assumes the presence of a
debugger with the capacity to generate outline proofs from a trace of execution
of a property: no such debugger is detailed here, but indications are given in
Chapter 10.

Chapters 6 and 7 have presented means of proving program properties in a
functional language. Specifically, Chapter 7 has given a mechanism within which
proofs might be represented as a sequence of steps, each such step corresponding
to the application of a proof rule to some arguments, together with an implied
context at each step. A method of checking a single proof, given a suitable
initial context was outlined.

This chapter attempts to draw together the ideas of Chapters 4, 6 and 7 by
presenting the design for a tool within the environment to assist in the automatic
verification of proofs once constructed; the examination of proofs, by presenting
them in a fashion most easily understood by the user; and the creation of proofs
by concentrating the user’s attention on the steps to be taken, rather than on
the specific details of a rule, or on the copying of information.

It is assumed that the coordinating module of the central tool is made aware
of the presence of the proof assistant, and that suitable messages (for example,
check proof) are added to support the functions described here. Internally,
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the proof assistant itself is programmed using an executor similar to that found
within the coordinating module, interpreting a functional control program. This
is used both to evaluate proofs, and to program the user interface. Like the
coordinating module, it is assumed that the control program in the executor of
the proof assistant is available for modification and configuration by the user,
and that the most frequent customisations are most readily performed.

The assistant provides help in three areas: validating proofs presented by
the user; displaying proofs in a form most easily comprehensible ot the user; and
assisting the user in creating and extending proofs. Sections 8.1 to 8.3 discuss
these activities. Sections 8.4 to 8.8 describe the design for the proof assistant.

8.1 Proof Validation

Each proof consists of a sequence of steps, each of which is a function mapping
contexts to contexts. A proof may be verified by applying each step in turn to
the context produced by the applications of the previous steps; the first step
must be applied to a context which is generated from the program definitions.
Since each proof step is defined by a function in a functional programming
language, this checking can take place automatically by writing the proof as
a single compound function from the initial context of the proof to the final
context. This merely leaves the question of the initial context, and verification
of the final context.

When given a proof for consideration, the proof assistant is also given a
list of all the declarations and definitions which are associated with that proof.
The proof assistant also maintains a list of previously established or asserted
properties, all of which are assumed to be independent of the property being
proved. The property to be proved is found, and this is made the initial goal.
The proof function is then applied to this initial context.

Once this has completed, the final context is examined, and the goal ex-
tracted. If this goal is the expression True, then the proof has succeeded, oth-
erwise it has failed. If the proof succeeds, the property may be added to the list
of successful properties, and may be used in proofs of later properties.

The assistant provides an interactive environment for the checking of proofs.
The user repeatedly specifies a property to be checked, and then the assistant
attempts to check the corresponding proof. If the proof fails, the error message
generally reveals what was wrong with a proof: for example, a fact could not
be found, a goal was not of the correct form, etc. The examination facilities of
the next section may help to trace the cause of the problem.

Once a property has been verified, it may then be kept as both a guarantee
of the correctness of the program fragments involved in the property, and also
as a property of the functions for use in developing other proofs. In this way,
theories of various data structures and their corresponding functions may be
built up hierarchically. A property and its proof, if well presented, also serves
as documentation for the data types and functions involved.



8.2. EXAMINING PROOFS 107

8.2 Examining Proofs

The step-by-step form of proofs as described in Chapter 7 is not very clear
— the current goal is only made explicit at the beginning of the proof. The
rest of the current context is never made clear. The purpose of any step or
sequence of steps cannot be easily determined by the user without reference to
this information. But, as explained above, presenting all of this information
would rapidly overwhelm any programmer by its sheer volume. Two measures
are taken to make proofs more presentable.

The current context may be traced through the proof in exactly the same
way as when a proof is verified. The successive application of steps produces a
sequence of contexts, and any information required for the sensible display of
the proof may be extracted from the context current at the beginning of any
appropriate proof step.

Each step of the proof is represented by one or more lines in the displayed
version of the proof. What is displayed depends on two factors: firstly, the proof
rule is associated with a particular display form inside the assistant, which lays
out where the various components (the rule name, arguments, goal, etc) are to
go, and what words and symbols are to be inserted to make the proof read well
(for example, compare the proof of Section 6.2.5 to that of 7.2.4); and secondly,
special annotations within the proof allow a user to control the display of a
proof. For example, if four or five steps concentrate on the transformation of
one specific subexpression of the goal, then the rest of the goal need not be
displayed, and an annotation may be introduced to the effect that only that
subexpression should appear wherever normally the entire goal would appear.
Other similar annotations might control how expressions are presented: in their
normal, minimally bracketed form, in a fully bracketed form, or as a more
directly parsed form.

The proof resulting from this layout procedure may then be copied into the
appropriate temporary buffer inside the editor module, from whence it may be
included in the editor view. This operation consists of the transmission of one
or more edit messages to the coordination module — these messages being of
the asynchronous variety.

8.3 Proof Development

The above sections have indicated how a proof, once constructed, may be au-
tomatically verified, and how it may be examined. Both of these features are
important as quality assurance and documentation measures. However, they
do not provide much help with the construction of the proof. There are three
areas in which machine assistance may help with the construction of a proof:
removing details from the user, reducing the risk of trivial errors; providing a
possible outline of the proof from an execution trace; and by suggesting rules
which might be applicable at any given step.

The most important assistance the machine may provide is taking over de-
tails of book-keeping. The user starts with a property to prove, and selects
a rule to use, and notifies the machine of this choice. The machine responds
with a form, requesting the arguments required for this rule, while providing
access to the current context. The user fills out the form, copying data from
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the context where appropriate. The machine then encodes this information into
the proof as a step, issues appropriate instructions to the editor to modify the
buffer, and redisplays the affected portions of the proof. The form to be used,
and the means for translating the information on the form into a proof step,
are stored in the proof assistant’s control program, along with the functions for
displaying the proof steps.

As has been suggested previously, the environment within which the proof
assistant exists contains a rich set of tools. One of these might be a functional
language debugger, capable of producing a trace of the execution of a functional
program, for any given program — for example a property. This could be taken
as an outline for a proof by evaluation, giving an indication of which rules
would be appropriate at each step. The detailed proof could then be generated
in exactly the manner described above. It seems unlikely that this approach
could be extended to make the proof of properties automatic, but it certainly
seems capable of directing the user as to the way in which a proof could be
constructed.

With goal-directed proof, a goal is broken down into sub-goals. Any par-
ticular goal can only be broken down in a limited number of ways, and some
of these are more obviously useful than others. A suitable matching algorithm
could be used to compare the apparent relevance of various rules for any given
step in the proof. Once selected, a step may be completed using the form-filling
method described above.

In any proof, some steps are harder than others, and these are often deferred
until others have been completed; also steps may depend on subproofs, which
are not particularly relevant when encountered — it is very useful to be able
to defer these until the main proof has been completed. To assist in this holes
may be left in the proof. These consist of rules which transform the context in
any desired way, but are currently unjustified. These holes in the proof must
be attended to later, before the proof can be finally verified, but in the interim,
they may be assumed true while attempting to prove the larger goal.

8.4 Objectives

The previous sections have laid out the general principles underlying the work
that we want the assistant to carry out. This section details these tasks as the
assistant sees them, and gives ideas as to the methods it will employ to satisfy
them.

The first objective of the proof assistant is to allow a proof system to be
established which is amenable to automatic checking. This system is described
in the previous chapter, and is based around the principle of the evaluation of
a property. The central feature of this aspect of the assistant is a knowledge
base, or information store, containing information derived from the program,
properties, and previously proved proofs.

The second objective is that the assistant should be able to discuss the proof
‘knowledgeably’ with the user. That is, the user should be able to ask questions
about a proof, and have them answered, and also to manipulate a proof. In
particular, this means that the assistant should be able to selectively interrogate
the knowledge base and present the results to the user in any form the user
desires, and to interactively present the user with more detailed information
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about sections of the proof.
The third objective is for the assistant to be able to advise on the construc-

tion of proofs; that is, given a knowledge base and an immediate context within
a proof, it should be able to assist the user on possible steps to take in order to
progress with the proof.

Apart from these tactical objectives, the proof assistant must meet some
non-functional criteria. It must facilitate making proof an integral part of de-
velopment; if this does not happen, then the key objectives of increasing qual-
ity, and hence productivity will not be met. In order to do this, it must be
well-integrated into the system, easy-to-use, and must provide real and obvious
benefits to the user. Ideally, the assistant should also provide feedback within
the development cycle by giving developers greater insights into their own —
and each other’s — code, by allowing them to access properties — known to be
true — about the functions, as well as documentation, interfaces, and source.
A browsing facility should be responsible for the presentation of all this infor-
mation in a structured form to the user.

In many development teams and systems, project managers attempt to mea-
sure development progress: but it is hard to know exactly what to measure.
Lines of code (usually in units of 1000 or 1000000) is probably the most com-
mon, often with qualifiers such as ‘debugged’ or ‘fully documented’. With this
system, another qualifier may be added - ‘which have been shown to meet their
specifications’ - and if the project has been specified in advance, including a
complete set of properties, the list of properties already proved could be the
entire measure. Indeed, this would add incentive to prove properties, since this
would be the measure of programmer productivity.

8.5 Architecture

The proof assistant is a tool within the environment described in Chapter 4. It
has a number of connections with the other tools in that environment: the UI
module provides it with an interface to the user; the compiler parses the user’s
code and generates proof axioms from it; the debugger (see Chapter 10) can be
used to produce proof outlines.

To meet its objectives, the proof assistant must be able to access these other
tools, create and maintain a database of facts about the program, acquire and
store a set of rules to be used in proofs, and accept, store, display and modify
proofs.

Figure 8.1 shows the architecture of the proof assistant which is similar
to that of the complete environment. The control program accepts requests
from the environment and controls the behaviour of the complete tool. The
interface allows the control program to view the services of the rest of the
environment as if they were in fact internal to the assistant. The knowledge base,
used for the storage of information relating to the program, and of previously
proved properties, is pictured here as being treated similarly. The proof rules are
represented externally as a functional style program as described in Section 7.3,
and internally as a parsed program.

Internally, the assistant maintains a collection of partial proofs. These may
be referenced or accessed from within the environment by passing suitable mes-
sages to the assistant’s control program. The proof engine may be used in two
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Figure 8.1: Organisation of Proof Assistant

rôles — either to validate a proof or to suggest possible rules that could be
used to extend the proof. In doing so, it has access to all of the proof rules, the
proof in question and the knowledge base. Some standard facilities are provided
to the proof engine to handle certain theories, for example number theory and
evaluation, without requiring all the rules to be programmed individually.

Externally, the assistant provides services as described in the previous sec-
tion. It must accept requests to check, display or modify a proof. Its responses
include indications that a particular task has been done, as well as interacting
with other elements of the environment (e.g. the editor module) directly to
produce the desired effects.

8.6 The Information Store

The functionality of the assistant may be broken down into three categories: the
storage and manipulation of information about programs; deductions about the
programs based upon this information; and interaction with the environment.
This section looks at the information to be stored, and techniques that can be
used to do this.

While parsing, the compiler picks up two sorts of information about pro-
grams: axioms are deduced from function definitions as described in Section 5.7,
and (extended) type information is gathered directly from the source.

The proof rules are created by an “expert” when the system is set up. These
are presented in the form of a functional program, which must be parsed in
order to load it into the assistant.

The properties associated with a program, and their proofs, are a further
two types of information which must be stored. The properties are simply
expressions in the native functional language, while the proofs are sequences
of steps in the language of proof rules. The properties and their proofs, while
very closely related, should be kept separate for two reasons. The property may
well be used in other proofs, for which the exact means in which it itself was
proved will not be relevant (other than that it was sound); while any individual
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property may have more than one proof associated with it (some of which may
be unfinished or unprovable).

The final category of information to be handled are the proof contexts. These
are needed transiently while work on a proof is progressing, but also it is de-
sirable to store them, along with other transient information (e.g. window
contexts) between sessions.

A wide variety of choices exist as to how this information could be stored.
The simplest method is to load in the programs, proof rules, properties and
proofs while initialising, and then to attempt each of the proofs. A “project”
file could assist in this by maintaining a list of files to be loaded for any session.

A more sophisticated method for storing the information would be to use a
database. The data is stored internally as structures using cross-references to
access each other. If this could be stored directly on the disk using a database
resembling a persistent heap, then this would be the most effective way of reini-
tialising. Alternatively, the data could be massaged to enable it to fit into a
more traditional database model.

The database model of the information store is so useful, that the other tools
in the environment would probably also wish to use it. As a consequence, this
design views a persistent heap as a separate tool within the environment, which
is capable of taking a data structure and storing it in a database as required.

8.7 Protocols

The three main functions that the proof assistant will be called upon to perform
have been outlined in Section 8.4 above. In order to do this, each needs to be
given a requests and responses interface, which together form the proof assis-
tant’s protocol. In addition, the knowledge base, being treated as a separate
tool, must be given a similar protocol. The sections below outline the protocols
for: the knowledge base; checking proofs; viewing proofs; and modifying proofs.

8.7.1 Queries

In order to access the knowledge base effectively from within the assistant (or
elsewhere), the knowledge base must have a defined protocol, in terms of re-
quests that it understands, and responses that it can make. In general, these
requests will take the form of queries about particular names, either unspecific,
or else qualified to take the scope into account. Figure 8.7.1 gives an outline of
this query sub-protocol.

These queries allow for names (represented by a list of characters) to be
used as a key to look up entries in each of the categories. Its interpretation in
looking up axioms and types is obvious, since these are essentially definitions
associated with names in scopes; in the case of a property or a proof it refers to
any property or proof which contains any of the symbols. Rules are found like
axioms, only in a completely different scope. Contexts are named specifically
and retrieved only by their given names. The result of a query is always a list
of pairs, each consisting of a (fully qualified) name and an item, where the item
is an appropriate data structure. If no matches occured, the result is an empty
list.
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data kb_query_0.0_req =
QueryRequest query

data kb_query_0.0_resp =
QueryResult [(name,item)]

data query =
Query [category] [name] |
QueryAnd [query] |
QueryOr [query]

data category =
Axiom | EType | Propty | Proof | Contexts | Rule

type name = [char]

data item =
ItemAx . . . | ItemET . . . | ItemPy . . . |
. . .

Figure 8.2: Querying the Knowledge Base

data kb_update_0.0_req =
UpdateRequest category name item
UpdateDelete category name

data kb_update_0.0_resp =
UpdateNew |
UpdateReplaced |
UpdateDeleted |
UpdateFailed

Figure 8.3: Updating the Knowledge Base

It is also possible to update the knowledge base. In general,1 this is not
useful for axioms, types or rules, since the information for these is deduced
directly from source programs at the initialisation stage; it is more useful for
the proofs and contexts, which are generally modified and updated by the proof
assistant. Properties are somewhere in between, in that they will generally be
specified in designs (and hence appear in source files). The requests to update
the database are presented in Figure 8.7.1. The possibilities are to add a new
item in a particular category with a given fully-qualified name; or to delete a
item from a particular category with a fully qualified name.

1The obvious exception to this is when the respective source files are loaded into the
environment
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data pa_check_0.0_req =
AttemptProof proofid

data pa_check_0.0_resp =
AttemptingProof sync-id |
Successful_Proof sync-id | -- asynchronous
Proof_Error sync-id [char] [char] -- asynchronous

Figure 8.4: Protocol for Checking Proofs

8.7.2 Checking Proofs

The procedure for checking a proof is fairly simple. The environment sends a
message to the assistant, citing a proof which it wishes proved. The assistant
then starts at the top of the proof, creating an initial context, and then applies
each of the rules in the proof in turn, updating the context as it goes. The proof
succeeds if and only if the expression in the final context is True.

The initial context consists of the initial property, an initially empty set
of hypotheses, and an initially empty sequence of ’fixed’ variables — those for
which no substitution may be made. This environment is used as an extra
argument to each proof rule, and a new context is returned.

At the end of the proof, the assistant sends an asynchronous message back
to the environment saying either that the proof was successful, or else giving an
error consisting of a message and the line of the proof that failed. Figure 8.7.2
gives the protocol for these messages; sync-id is a special synchronisation ID,
to allow the environment and assistant to stay in sync, in spite of each working
on separate actions.

8.7.3 Displaying Proofs

The normal form for proofs, as set out in Section 7.2 is not entirely clear, as is
shown by the example proofs in Sections 7.2.4 and 6.2.5. The assistant can help
by supporting a protocol to generate more readable forms for a given proof. This
generally takes two forms: massaging the text of the proof to add in information
which is to be found in the context, and then storing the information in an
editor buffer, thus making it available to the user; and presenting some form of
graphical overview or closeup of the proof.

There are two means to getting enhanced representations of the proof. The
first, and simplest, is for the environment to support user interaction to control
the display of the proof, in particular the use of dialogs to set the preferences for
the display of individual steps of the proof. The alternative is to add pseudo-
rules into the body of the proof, which likewise control the format of the proof.

Graphical representations of, for example, an overview of the proof, or an
exploded view of one of the expressions or rules within the proof, may be re-
quested interactively from within the environment. As above, a proof may be
annotated with pseudo-rules to permanently attach particular graphical views
either to a complete proof or to a step of a proof.

Acheiving the desired effect requires close cooperation between the assistant
and the environment; the environment needs to be able to select parts of the
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data pa_display_0.0_req =
DisplayProof proof-id format
DisplayProofStatement proof-id statement-id format
AnnotateProof proof-id proof-annote
AnnotateProofStatement proof-id statement-id state-annote

data pa_display_0.0_resp =

Figure 8.5: Protocol for Displaying Proofs

data format =
Plain buffer |
Expressions buffer bool |
Outline

Figure 8.6: Formats for Displaying Proofs

proof and then encode the user’s intended action into a message to send to the
assistant. The basic protocol for this is presented in Figure 8.7.3. There are no
specific responses to these messages from the assistant; instead it just generates
suitable messages to send to the editor and user interface modules.

The DisplayProof and DisplayProofStatement messages instruct the as-
sistant to construct a particular view of a proof, or an individual statement.
The proof-id identifies which proof, and the format determines how the proof
is to be displayed. The statement-id specifies a statement within the proof.
The AnnotateProof and AnnotateProofStatement messages add annotations
to an entire proof and to a proof statement respectively. Annotations are dis-
cussed in Section 8.8. Three formats are specified here for displaying proofs,
which also apply to individual statements, and an extra format is provided just
for the individual statements. These are summarised in Figure 8.7.3.

The Plain format just displays the proof rules as given in Section 7.2.4;
the Expressions format gives the goal expression of the context at each step,
applying annotations attached to the proof if the boolean is True; and the
Outline format generates a graphical outline of the proof, giving each proof
subblock as a box, and showing what the logical effect of each block is, as a
deduction.

8.7.4 Manipulating Proofs

So far, proofs have been treated as static objects to be manipulated. In order to
gain real benefit from having the assistant as part of the environment, it must
be possible to extend, and indeed create proofs with assistance.

Four levels of assistance in this activity are envisaged: the user may request
to type in a new proof step at a particular point in the proof, in effect simply
editing the raw proof; the user may fill out an assistant-supplied dialog box,
possibly copying information from elsewhere on the screen; the assistant may
suggest a range of alternatives, and then assist the user in narrowing down what
is needed; and finally, the assistant may do most of the work automatically, just
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data pa_manip_0.0_req =
CreateProof property |
AddStep proof-id statement-id proof-step |
DialogAddStep proof-id statement-id |
DialogSuggest proof-id statement-id |
SuggestAssist sync-id partial-proof-step |
AutomateProof proof-id method

data pa_manip_0.0_resp =
SuggestSync sync-id

Figure 8.7: Protocol for Manipulating Proofs

involving the user when it can progress no further.
The protocol for manipulating proofs is given in Figure 8.7.4. Proofs may

be created from scratch by sending the CreateProof message, along with a
property to be proved. The AddStep message adds a new step to a specified
proof after a specified step. DialogAddStep specifies a proof and a step to
insert a new step after, but depends upon a series of user interactions based
around a dialog box to decide which proof rule to use and what arguments to
give it. The DialogSuggest message works analogously to the DialogAddStep
message, except that the assistant does more work, evaluating the possibilities,
and trying to guide the user in the right direction. When the user has progressed
some way, a button on the dialog box sends a SuggestAssist message which
resynchronises the assistant with the user, so that the assistant knows more
exactly where the user is going and can customise choices more precisely. Finally,
the AutomateProof message attempts to generate a proof of a property given an
existing proof (which it may ignore). No automatic proof methods are included
in this design; however, a possibility for extracting an outline proof from a
property using the debugger is discussed in Chapter 10.

Other ways in which the proof assistant can assist the user in the construction
and maintenance of proofs are legion. For example, inserting an extra proof rule
half way through a proof could subtly change the format of the expression, and
misdirect all subsequent references to a particular term. The assistant adjusting
all subsequent lines of the proof to take account of this would be invaluable.

8.8 Annotating the Language of Proof Rules

The language of proofs presented in Section 7.2 describes adequately the mean-
ing of a proof, and is sufficient to check a proof of a property. However, it is
insufficient to say how it should be laid out to be comprehensible to humans,
or to be aesthetically pleasing. In order to do this, it is necessary to extend
the language of proof rules (see Section 7.3) by adding some annotations in the
form of pseudo-rules.

There are two basic sorts of these annotations: they may either apply to
the entire proof (or some part of it); or they may just apply to the immediately
following statement. Some annotations may be used in either way. Three special
proof rules are used to handle annotations.
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An annotation which just applies to the next line is introduced by the key-
word annotate, followed by the annotation type, and the appropriate argu-
ments. An annotation which applies to a section of a proof is introduced by
begin_annotate and ended by end_annotate. The first argument to begin,
and the only argument to end, is an identifier which is used to handle the pair-
ing of begins and ends since these do not need to nest, but can be interleaved.
Additionally, it is not necessary to have an end for every begin: often annota-
tions will be used for the entire proof, and so will be started at the start of the
proof, and never ended.

Example annotations include: replacing every occurence of an expression (or
a pattern) with another expression; replacing a complex subexpression with an
ellipsis; highlighting a term which moves dramatically around an expression from
step to step; adding extra information from the context; and adding graphical
annotations to particular steps.



Chapter 9

The Meaning of Proofs

Chapter 7 presented a detailed exposition of a proof system for functional lan-
guages, designed to be intuitive for use by functional programmers. Chapter 8
illustrated how the proof system might be incorporated into a functional pro-
gram development environment, by presenting the design for a proof assistant.
The only remaining task is to demonstrate that the proofs constructed using
this proof system are sound. This is done here by interpreting the proof system
in terms of classical or constructive logic together with domain theory.

A proof in the proof system consists of an initial context and a series of steps.
Each step uses a current context, and produces a new context as its result. The
initial context is used by the first step, and subsequent steps use the context
resulting from the previous step. The final step produces a final result context.
A proof succeeds if this final context has True as its current expression. A proof
is sound if it succeeds and every step in the proof is sound.

It will be recalled from Chapter 7 that any given step of the proof will do
one of two things: either it will transform the current expression in some way,
generally making it simpler, or it will add information to the fact database.
It is possible for a single rule to do both, but such rules are not considered
here. As the proof progresses, the fact database will increase in size, each added
datum being a logical consequence of those already known; and the current
expression will become simpler, each being a logical consequence of the fact
database taken together with the resultant expression after the next step. In
this way, the proof is a mixture of forward and backward reasoning: the known
facts increase in a forwards fashion, starting with the facts which are direct
consequences of the program, while the current expression evolves backwards,
ending with a statement of absolute truth. The four general cases of proof steps
are illustrated in Figures 7.1 to 7.4 in Chapter 7.

Figure 9.1 further illustrates this mixture of extending the fact database
while reducing the current expression, by giving a two-step proof and showing
the cumulative implications of the steps.

To demonstrate that a proof is sound, it must be shown that any fact added
to the database is a logical consequence of the existing facts, and that any reduc-
tions performed on the current expression guarantee that the prior expression
is a logical consequence of the facts database and the resultant expression. It
may be shown that each of the proof rules is valid for all possible arguments,
and that the structures used to bind the proof are truth-preserving. Then any
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Figure 9.1: Cumulative proof steps

proof constructed using these rules must be sound.
As explained in Chapter 7 no explicit statement of which rules are supported,

or how they are to be implemented, or what style they should take, is made here;
rather, all that is described is a mechanism for checking that any given proof
rule is sound with respect to the appropriate logic.

9.1 Translation of Expressions

Within a proof, statements such as goals to be proved or facts in the database
are written in the object-level language. Within the proof system, these are not
viewed as parts of the object program, but rather as statements about the object
program. For example, an equation such as sizeof Nil = 0 is taken to mean
that the expressions on either side have the same value. A boolean expression
such as member l 42 standing alone is taken to mean that the expression has
value True, i.e. that if it were evaluated for any suitable instantiations of its
free variables, the result would be True. In this chapter, this interpretation of
object language statements is made precise by providing a direct translation
into first order logic.

The value of an expression can be given precisely via the value semantics
discussed in Chapter 2. The value of an object level expression e will be rep-
resented as ‖e‖, and all values will be expressed in the form ‖e‖ for suitable
expressions e, except that ⊥ will be used as a synonym for ‖Bottom‖. The
value of a type expression is the set of values associated with that type, as in
Chapter 2. In addition, boolean expressions and connectives in the object lan-
guage have an interpretation as logical statements and connectives. In order to
make this interpretation clear, two sets of symbols are used in this chapter. The
symbols of the object language are shown on the left and the roughly equivalent
symbols of first order logic are shown on the right in Figure 9.2.

It is important to note that boolean expressions in the object language can
have three values, ‖True‖, ‖False‖ and ⊥. An expression e is only interpreted
as true if it always evaluates to ‖True‖, and is interpreted as false if it ever
evaluates to ‖False‖ or to ⊥.

The computable equality == only evaluates to true if both arguments rep-
resent the same finite, total data value. It is therefore necessary to test that
both values are finite, total data values as well as testing their equality. The
non-computable function isftd is used to test whether or not a value is finite,
total and data. The interpretations of & and ~ correspond to the way in which
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True true
False false
~ ¬
& ∧
| ∨
imp →
= == ≡
:: ∈

Figure 9.2: Rough comparison of computable and logical connectives

‖ ~x ‖ -> ‖x‖ ≡ ‖False‖
‖ x & y ‖ -> ‖x‖ ≡ ‖True‖ ∧ ‖y‖ ≡ ‖True‖
‖ x | y ‖ -> ‖x‖ ≡ ‖True‖ ∨ (‖x‖ ≡ ‖False‖ ∧ ‖y‖ ≡ ‖True‖)
‖ imp x y ‖ -> ‖x‖ ≡ ‖False‖ ∨ (‖x‖ ≡ ‖True‖ ∧ ‖y‖ ≡ ‖True‖)
‖ x == y ‖ -> isftd ‖x‖ ∧ isftd ‖y‖ ∧ ‖x‖ ≡ ‖y‖
lhs = rhs -> lhs ≡ rhs
‖ x :: t ‖ -> ‖x‖ ∈ ‖t‖

Figure 9.3: Translation of Boolean Operators

they are evaluated in the object language, which takes into account that ⊥ must
be interpreted as false. The interpretation of | includes the anticipated evalua-
tion order of the functional operator: the second argument may be Bottom, but
only provided that the first argument is True; the first argument may never be
Bottom; and the second argument may not be Bottom if the first argument is
False. The interpretation for imp is analogous, except that where | allows the
second argument to be Bottom when the first is True, imp allows the second
argument to be Bottom when the first is False.

9.2 Justification of Proof Rules

The previous section indicated how a statement, written in the object-level
language, could be interpreted as a statement about the object program, by
translation into classical or constructive logic. It is now necessary to show a
means by which one such statement may be derived from one or more others
in a sound fashion. It will be recalled from Chapter 7 that there are essentially
four styles of proof rule: goal-directed steps, forward steps, transformational
steps, and steps with subproofs, as illustrated in Figures refgoal-step to 7.4.
The transformational steps do not differ greatly from the goal-directed steps, so
only the other three will be considered here.

Each proof rule, of whatever style, provides a mapping from one context to
another, possibly with the assistance of one or more subproofs. A proof rule
may be unpacked so as to give a definition of its operation in terms of its prior
and resultant contexts, together with the subproofs it uses. Taken together,
this gives a classical statement of the meaning of the rule, which may then be
checked for validity by a separate classical proof.
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For example, the proof rule for commuting addition in Chapter 7 was given
as:

add_comm (Spec s) [] (Context g f sb rb) =
Context (replace_subexp g s (Expr (Lit "+") [r,l])) f sb rb

(Expr (Lit "+") [l,r]) = extract_subexp g s

This is a goal-directed step, so it has the validity condition given in Fig-
ure 7.1, that

F, g’ ` g

where g is represented by the free variable g in the context, while g′ is given
by the replacement of one subexpression for another in the original goal g. The
database of known facts F , represented by the free variable f from the context,
is not used in this proof rule. The rule acts only on a subexpression of the goal
g, which subexpression is denoted by s. If s is not a valid subexpression of
g, or if it is not of the appropriate form (the addition of two sub-expressions),
then the proof rule fails. Assuming it succeeds, then the goal g must have at
the indicated point a subexpression l+r, so there is an expression X[v] where
the free variable v occurs exactly once in X and not in g or g′, which has the
properties:

g = X[v/(l+r)]
g’ = X[v/(r+l)]

The first of these states that substituting l+r for the variable v in X produces
the original goal, so X denotes all of the goal which is not specified in the rule,
while the variable v represents the part of the goal specified by v. For example,
in the expression 18-(2+3) == 13, the expression X would be X[v] =18-v ==
13. The subexpression replacement in the rule is equivalent to substituting for
the variable v in X, and is the second property of the expression X given above,
namely that the resultant goal is the result of substituting r+l for v in X. So
the complete condition for this step to be valid, given that a suitable X may be
found, is:

X[v/(r+l)] ` X[v/(l+r)]

which may be easily proved by appealing to the law of substitution of equals for
equals, then demonstrating that r+l and l+r are equal, which is given by the
property of commutativity of addition from number theory.

The rule block to unfold hyp consists of a forward step combined with a
single subproof. Its definition will be recalled from Chapter 7:

block_to_prove_hyp ex hs [p] (Context g f) =
assert (ff == Expr (Lit "True") [])

(Context g (add_fact newf f))

(Context ff fr) = p (Context ex (add_fact_list hs f))
newf = Expr (Lit "_deduct") (hs++[ex])
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The validity condition for a forward step with a single subproof is:

`pt1
F,t1 ` f
F’ = F*f

The condition for the inner proof (which is inductively assumed to be valid),
may be stated as:

F,hs `pex

By the deduction theorem, this may be rewritten to:

F ` hs ⇒ ex

And so the condition for the complete rule may be written as:

F ` hs ⇒ ex (1)
F’ = F*(hs ⇒ ex) (2)

Condition (2) is simply satisfied by the addition of the new fact to the facts
database. Condition (1) is satisfied since if the proof p is sound then ex follows
under the hypotheses hs, and by the deduction theorem this is equivalent to
expression (1), and the deduction theorem is used on hs and the expression ex
to generate the new fact.

To enable rules to check that subproofs meet certain soundness conditions,
one or more boolean flags may be added to the actual definition of the context.
The holes in the proof suggested at the end of Chapter 8 may be implemented
by adding a boolean flag which is set initially True, but may be later set to
False if a rule which leaves a hole is used. A rule which does not leave a hole in
the proof passes this flag on unchanged. Transformation arguments, where one
expression is transformed into another in the style of Section 6.2.3, requires a
check that all the proof steps are reversible. A boolean flag working on exactly
the same principle as for the holes accomplishes this.
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Chapter 10

Conclusions and Future
Work

The objective of this research has been to provide the design for an environment
in which functional programs might be developed, properties of them defined,
and then these properties might be proved correct. Two constraints were placed
on the achievement of this objective: that the features of the environment and
the proof system should be intuitive to functional programmers; and that the
design of the environment should lead the programmer naturally from the design
of a program, through the development process and encourage the proof of
properties as a guarantee of software correctness.

The design of the environment began with the definition of a functional
language, a sublanguage of the standard functional language Haskell, and for
which an evaluation mechanism was provided. This sublanguage was given the
name Flair, and was described in Chapters 2 and 3. It fulfills the requirements of
a functional language, as intended in the objective, while avoiding many of the
complications in Haskell (such as arrays, classes, and the interaction of pattern
matching and guarded equations).

Chapter 4 presented the framework for the environment, permitting the con-
struction of a collection of tools, coordinated by a single module based around
the execution of a user-configurable functional program, written in the same
functional sublanguage, Flair. Three other elementary tools — a compiler, an
executor, and an interface to the non-functional filestore were described. All
of the modules were made sufficiently general that users could configure the
environment to their own preferences, and, at the same time, new tools could
be introduced into the system with a minimum of complications. This provided
a design for the first part of the objective — an environment within which func-
tional programs could be developed — and did so under the first constraint,
that the environment should be intuitive to functional programmers.

To meet the rest of the objective, it was necessary to develop a proof system,
and specifically one that catered for the intuitions of functional programmers.
Chapter 5 started this process by refining the type system, to produce a means
of making explicit statements about types as sets of values, and to introduce
the ideas of subtypes and overlapping types. These ideas, together with the
pattern matching algorithm of Chapter 3, allowed function definitions, compris-
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ing overlapping defining equations, to be separated into a set of independent
equations, each individually governed by an expression which tests whether or
not the equation is applicable to any given set of values. This separation into
independent equations allows the building of a set of axioms which are imme-
diately provable from the source program, and form an essential component of
any proof system.

The next step was to find a suitable logic, and a suitable means of presenting
the proofs. Again, the overriding concern was that each should reflect the intu-
itions of functional programmers. Chapter 6 reviewed some of the options, and
eventually selected a form for statements that closely resembled that for expres-
sions in the object language, with the proviso that these could be understood to
be statements about the object language, by translations into a more familiar
representation, for example, classical or constructive logic. The presentation of
the proof decided upon was also functional: it consisted of a compound function
from an initial context to a final context, but written sequentially, rather than
as nested applications.

Chapter 7 presented the selected proof system in detail, indicating the nature
of the context, the various types of proof step which are supported, and the
precise representation of proofs. The concluding section of the chapter described
how proof rules themselves could be written in the same functional sublanguage
as the object program, and that was to be used elsewhere in the environment.

The achievement of the remainder of the objective — integrating proof into
the development of functional programs — and the second constraint — provid-
ing a natural progression from design to proof — was the subject of Chapter 8,
which described the facilities provided by a specialised tool — the proof assis-
tant — for the verification, examination, and manipulation of proofs. The use of
proofs was encouraged by enabling them to be mechanically checked, thus giv-
ing real guarantees of correctness. The facilities for the manipulation of proofs,
particularly the proof outline obtained from a debugger such as that described
below, assist in the construction of proofs in a way which flows naturally from
the normal process of testing programs using a debugger — thus satisfying the
second constraint. The ability to examine a proof presented in a clear, intelli-
gent fashion provides valuable documentation, both of the proof, and, because
a property proof is so closely related to the function definitions, of the functions
involved in the property, and their relations with each other.

Chapter 9 finished the discussion on the proof system, justifying its correct-
ness by appealing to classical or constructive logic, and enabling each proof rule
to be checked.

Two issues emerge immediately as still requiring attention. Firstly, this is
a design, not an implementation. An implementation would provide both a
useful tool for functional program development, and a means of testing many of
the ideas presented here, and their applications with real software development.
Secondly, the features of Haskell not in the sublanguage need to be addressed
(particularly the class system), and any extensions made to the types system of
Chapter 5, and the proof system described in Chapters 7, 8 and 9 None of the
other material is likely to be affected.

Three additional tools have been envisaged as current or future developments
within the context of the environment described here. At the time of writing,
one of these is currently under research at Bristol. These three tools flesh out
the environment, which, even with the proof assistant, is not really capable of
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Nil

append1

4

3

append1

Figure 10.1: Stack while executing reverse (Cons 3 (Cons 4 Nil))

covering all the aspects of the development process.
A functional language debugger, providing a range of facilities for debugging

programs, would be an invaluable aid, firstly to testing and understanding pro-
grams, and secondly as a stepping stone from program development to program
proof. In the G-Code model, it is possible at the start of any block to auto-
matically determine the current expression to be evaluated (although special
information needs to be attached to each block, apart from the code, in order to
do this). The expression may be determined by looking at the current block, the
current stack, and the heap nodes pointed to, either by pointers on the stack,
or within other heap nodes. This expression, once obtained, is the most telling
piece of information relating to the current state of execution of a program. For
example, the reverse function, for which G-Code is given in Chapter 3 (see
Figures 3.5 to 3.8), might be used to evaluate the expression:

reverse (Cons 3 (Cons 4 Nil))

When the recursion has been fully unwound, reverse is entered with one
argument on the stack (Nil) and two previous stack frames maintained by the
code for append. The stack is as given in Figure 10.1. append1 is the CONTINUE
block of the function append, to which control returns after evaluating its first
argument, which decides between the cases Nil and Cons. The expression rep-
resented by being in the block reverse is the function reverse applied to the
top element of the stack, that is,

reverse Nil

Each lower frame on the stack may be recovered in turn. In this case, each
is in the block append1, which represents the expression append applied first
to the result of an inner evaluation (which is held in the special register NODE
during evaluation, but here is the expression previously recovered), and secondly
to the new top element of the stack (after the previous frame and return address
have been removed). So the expression for the second stack frame is

append (reverse Nil) 4

and that for the whole expression is
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append (append (reverse Nil) 4) 3

which can indeed be determined to be the value of the expression at that point,
and equivalent to the original expression, and the final value

Cons 4 (Cons 3 Nil)

An outline proof of a property is obtained by tracing the evaluation of a
property, and observing which sub-expressions are unfolded at each step. This
is the functional language equivalent of a normal execution trace of a sequential
program. The result, if properly formatted and collated to remove unnecessary
laziness, can provide a guide for a proof, encouraging programmers to move
from program development to proof. Two important points which must still be
dealt with by the user are the substitution of induction for recursion (although
in general the outline proof will include both base and inductive cases); and
the handling of non-terminating expressions (which are beyond the abilities of
a debugger).

As with environments, most work in the field of debugging has been done
with imperative languages, such as C and PASCAL. PROVIDE [57] is a de-
bugging environment for a subset of the C language. It provides a graphical
environment which gives the user easy access to the program source code. The
primary objective of PROVIDE is to give the user a pictorial view, and graphical
control of the state of program execution at any point. PROVIDE is based sig-
nificantly on BALSE [10], a teaching aid used for the animation of processes and
observation of the data structures being manipulated. BALSE is programmed
at compile-time from within the program being visualised. PROVIDE is pro-
grammed interactively while the program is being executed, and the graphical
display can be bound at any time. The data is updated after every transaction.
Generally, a transaction consists of one line of source code, but may be defined
by the user to be any number of lines. This approach has two advantages: firstly,
it allows the user to specify the granularity of the investigation, and secondly, it
allows the user to bind interrelated statements into a single atomic operation.
Additionally, the system allows the states of the program to be stored and then
later played back for repeated inspection of target areas of the code.

PICT [25] differs from systems such as PROVIDE and Tinkertoy [19] which
concentrate on the relationships between the procedures and their arguments.
Instead, PICT is a pictorial programming language which focuses on making
the data flows clear, rather than the relationships between the functions and
their arguments. PICT is based around a very simple PASCAL-like imperative
language which is entirely graphical. The system works in colour: data flows
between functions are colour-coded, the colours indicating the variables being
used. The functions and procedures themselves are represented by colour icons,
the patterns on the icons indicating both the name and the type signature of the
procedure. When the procedure has been constructed it is possible to observe
its execution in exactly the same graphical form. The debugging cycle is then
rapidly and easily integrated with the main edit and compile operations.

Such traditional methods of debugging (tracing data and code flows), which
work well for imperative, state-based languages, are not really practical for the
debugging and analysis of non-strict functional programming languages, since
these are not state-based, and do not have a definite, step-by-step evaluation
order.
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Instead, existing functional environments place great emphasis on reuseable
code modules and the testing of individual features and functions away from
the main body of the program. The biggest problem with this is that in order
to test behaviour of real programs, it is necessary to retype structures created
by a producer in order to feed them to a consumer.

One solution is to allow side-effects in the evaluation – within an environment
– but to treat these as separate from the value of the program itself. This can
be done in a number of ways. One possibility is just to introduce printing
statements as a function applied to a value whose value is simply the original
value. An alternative is to return an annotated pair from a function, whose
annotated portion may be printed, or manipulated, from within the context of
the calling function. Another problem to be encountered here is that, with lazy
evaluation, the generation and printing of these values are interleaved, and so
the printing of this output can be very confusing.

A more comprehensive solution is presented by Hall and O’Donnell [31], who
present a language DAISY, and a transformation environment whereby standard
schemes or ‘templates’ may be applied to functions to produce debugging func-
tions. These allow for user interaction, variable display and execution, as well
as redefining of functions, when certain conditions within the executing code
are encountered. Since the transformations are automatic (although applied
manually), the source code for the program is always completely declarative.

A tool which is found useful by many programmers is MAKE [21], which
keeps programs under development up to date in such a way that the minimum
amount of work needs to be done. This idea is akin to that of lazy evaluation,
and it is possible to design a functional tool to perform this task. A collection of
definitions indicate the dependencies between various definitions and modules:
if a module has not been recompiled since its last change, and is needed, then
it is recompiled. This can also be used as an optimisation: if a result has been
evaluated and stored, then the stored version may be used if nothing it depends
upon has changed. It also ties in with the ideas of automatic recomputation in
spreadsheets. Finally, it can provide a fully functional interface to the operating
system.

This research originated as the first step towards the semi-automatic con-
struction of functional programs. Turner [81] addresses the issue of extracting
programs from constructive proofs; but this is somewhat unsatisfactory for two
reasons: the proofs are somewhat hard to construct, possibly harder in general
than the programs; and the proof must still be generated by hand.

The next step towards the goal of more automatic construction of programs
from the work presented here would appear to be allowing machine assistance
in the generation of programs, similar to that permitted for proofs. A speci-
fication for the function is laid down, then the proof begins by attempting to
demonstrate that a function exists to match the given specification. Turner
used various sorting functions as an example of his approach to this problem.
The following example attempts to illustrate an alternative derivation of the
insert sort by using an interactive method. Like Turner, it will be assumed
that the functions perm and order are well known, as are their properties (see
Figure 10.2). This example is given using the standard Haskell notation for lists
and guarded equations.

The first step is to define the property to be proved. This is written as
an expression, and a property that is to hold. The intent is to demonstrate a
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ord [] = True
ord [x] = True
ord (x:y:rxs) = x <= y & ord (y:rxs)

perm [] [] = True
perm (x:rxs) ys =
stest & perm rxs rys
where
(stest,rys) = split x ys

split x [] = (False,[])
split x (y:rys)
= (True,rys), x == y
= (stest,y:rys1), otherwise
where
(stest,rys1) = split x rys

Figure 10.2: The functions perm and order

function interactively which matches the specification.

* sort xs :: ord (sort xs) & perm xs (sort xs)

The asterisk * indicates a user prompt, at which the specification is typed.
The next step is to decide how the function will treat its arguments. In this
case a recursion will be chosen, which handles the two cases of empty lists and
non-empty lists.

* induction(sort,xs::{[],(x:rxs)})

sort [] = _1
sort (x:rxs) = _2 x (sort rxs)

_1 :: ord (_1) & perm [] (_1)
_2 x ys :: ord ys => ord (_2 x ys) & perm (x:ys) (_2 x ys)

This produces a definition for sort in terms of two subsidiary expressions,
each of which is automatically given a specification similar to that originally
laid down for the expression sort xs. The new functions are lifted out to the
top level and so must be given any free variables appearing in the patterns of
the previously defined function. For simplicity, only those arguments which are
needed are included here, and the specification here (and elsewhere) has been
simplified. To avoid cyclic arguments, once a function has been defined (such
as sort here) it may not be used later in the definition.

The next step is simply to suggest a possible expression for 1. The answer
is suggested by its specification, since the only permutation of the empty list
is the empty list. This completes the definition of the first case of the function
sort, and gives rise to a proof obligation, which is simply the specification of 1
instantiated with the suggested expression.
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* suggest(_1,[])

sort [] = []

ProofOblig : ord [] & perm [] []

The next step is to give a more meaningful name to 2. The purpose of 2 is
to insert the element x into the appropriate place in the sorted list of remaining
elements.

* name(_2,insert)

sort (x:rxs) = insert x (sort rxs)

insert x ys :: ord ys => ord (_2 x ys) & perm (x:ys) (_2 x ys)

The next step is to begin the definition of insert. Like sort, this is a
recursive function, so the first step is to unfold the recursion into the two cases,
empty and non-empty lists.

* induction(insert,ys::{[],(y:rys)})

insert x [] = _3
insert x (y:rys) = _4 x y rys (insert x rys)

_3 :: ord [] => ord _3 & perm (x:[]) (_3)
_4 x y rys zs ::

ord zs & perm (x:rys) zs & ord (y:rys) =>
ord (_4 x y zs) & perm (x:(y:rys)) (_4 x y zs)

The case of insert for 3 may be easily cleared up, as for the base case of
sort above: the only permutation of a singleton list is the singleton list.

* suggest(_3,[x])

insert x [] = [x]

ProofOblig : ord [] => ord ([x]) & perm (x:[]) ([x])

This gives rise to the appropriate proof obligation, that if the argument to
insert is sorted, then so will the result.

The non-empty case of insert, 4, in fact consists of two cases: when the
element x is to be placed on the front of the remaining list, and when it is to
be inserted later in the list. This requires the use of a test, here represented by
a guarded equation.

* guard_eqn(_4,{x<=y,otherwise})

insert x (y:rys)
= _5 x y rys (insert x rys), x<=y
= _6 x y rys (insert x rys), otherwise
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_5 x y rys zs ::
ord zs & perm (x:rys) zs & ord (y:rys) & x <= y =>
ord (_5 x y rys zs) & perm (x:(y:rys)) (_5 x y rys zs))

_6 x y rys zs ::
ord zs & perm (x:rys) zs & ord (y:rys) & x > y =>
ord (_6 x y rys zs) & perm (x:(y:rys)) (_6 x y rys zs))

Since it is known what are to be the two actions in these two cases they
may now be stated as suggestions, and then the code is finished, just leaving
the proof obligations, which may be tackled with the aid of the proof assistant.

* suggest(_5,(x:y:rys))

insert x (y:rys)
= (x:y:rys), x<=y
...

ProofOblig :
ord (insert x rys) & perm (x:rys) & ord (y:rys) & x <= y =>
ord (x:y:rys) & perm (x:(y:rys)) (x:y:rys))

* suggest(_6,(y:insert x rys))

insert x (y:rys)
...
= (y:insert x rys), otherwise

ProofOblig :
ord (insert x rys) & perm (x:rys) & ord (y:rys) & x > y =>
ord (y:insert x rys) & perm (x:(y:rys)) (y:insert x rys))

* done

Proof Obligations:

ord [] & perm [] []
ord [] => ord ([x]) & perm (x:[]) ([x])
ord (insert x rys) & perm (x:rys) & ord (y:rys) & x <= y =>
ord (x:y:rys) & perm (x:(y:rys)) (x:y:rys))

ord (insert x rys) & perm (x:rys) & ord (y:rys) & x > y =>
ord (y:insert x rys) & perm (x:(y:rys)) (y:insert x rys))
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Appendix A

Syntax and Semantics of
FLAIR

This appendix describes the understood interpretations of FLAIR programs
presented in the main part of this thesis. Section 1 addresses the lexical issues
in parsing programs in the language; Section 2 provides a formal syntax for
the language; and Section 3 presents an informal semantics for the language,
including some consistency checks placed upon programs in the language.

Extensions to the language, as used in some places in the text are next
presented. Section 4 describes extensions needed to take advantage of the system
of extended types in Chapter 5; the syntax used for proofs in given in Section 5;
and Section 6 concludes the appendix by giving details on extensions used for
simplicity in certain places in the text.

A.1 Lexical Analysis

The lexical analyser breaks the input into tokens and passes these to the syntax
analyser. Any lines starting in the leftmost column are considered comments,
and discarded before further analysis is done, leaving a blank line. If the com-
ment starts with the characters -- then the blank line is discarded as well. In
any other column, the characters -- introduce a comment, in which case all the
characters from the beginning of the -- to the character immediately preceding
the next newline is discarded. Comments formed by starting in the leftmost
column, but without an initial -- must be surrounded by blank lines. A blank
line is one which consists entirely of non-printing characters.

The remaining input is broken into tokens in a fairly simple way. Printable
characters are grouped into three classes: alphanumerics (upper and lower case
letters, numbers, ., and _), symbols (+, -, /, *, &, |, ...), and punctuation
((, ), ,, [, ], { and }). Tokens are formed by any string of: consecutive
alphanumerics; consecutive symbols; or single punctuation characters. These
tokens may therefore be described by the three regular expressions:

[A-Za-z0-9._]+
[+/*&|-. . .]+
[()[]]

137



138 APPENDIX A. SYNTAX AND SEMANTICS OF FLAIR

Additionally, the characters ’ and " are used in pairs to introduce character
and string constants respectively. These are not allowed to extend beyond the
end of a line. The character \ is treated specially: it is not permitted outside
of string or character constants; inside it is used to introduce special (generally
non-printable) characters, by starting a multi-character sequence.

Non-printing characters are generally discarded. The exceptions are the
newline, space and TAB characters. These are processed in the following way:

• between tokens on the same line, newline characters do not appear, and
space and TAB characters are ignored.

• at the beginning of a file, or after a newline character, space and TAB
characters are counted to generate an indentation for the next line. The
contribution that TAB characters make to this count is implementation-
dependent. The previous line and previous indent refer to the line, and
indentation of the line, preceding the newline. Four outcomes are possible:

– if the new line has the same indent as the previous line, a BREAK-LINE
token is generated.

– if the new line has greater indent than the previous line, then it is con-
sidered a continuation line, no token is generated, and subsequently
this line is considered to have the same indent as the previous line.

– if the new line has less indent than the previous line, then entries on
the indent stack are popped until an entry is found with a matching
indent level. An error results if no matching entry is found. As
each entry is popped, a pair of tokens, BREAK-LINE, END-IND are
generated.

– if the new line is blank, then the indentation for the next non-blank
line is calculated. If the indentation is the same or less than the
previous indent, then the actions are the same as if no blank line had
appeared. If the new line is indented further than the previous line,
then the previous indent is pushed on the indent stack (creating it if
necessary) and the token BEGIN-IND is generated.

At the beginning of the file, a BEGIN-IND token is generated, and at the
end, the indent stack is unwound, if necessary an extra BREAK-LINE token is
generated, and finally a END-IND token is generated.

A.2 Syntax

A program in the FLAIR language consists of declarations, grouped according
to the layout described in the section above. There are three types of dec-
larations: types, parameters, and functions. Here the syntax [...] is used to
indicate 0 or more repetitions of ..., {...} represents 1 or more repetitions and
...|... represents alternatives. A character in quotes ’ ’ is a single punctua-
tion character, tokens in bold are specific symbols or identifiers, and subscript
annotations to identifiers indicate the intended use of the name in this scope.

prog = BEGIN-IND [ decl BREAK-LINE ] END-IND
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decl = type-decl
| fn-decl

type-decl = data idtype−name [ type-var ] =
idcons [ type-expr ] [ | idcons [ type-expr ]]

| type idtype−name [ type-var ] = type-expr
type-var = idpoly−var

type-expr = idtype−name

| ’(’ idtype−name [ type-expr | type-var ] ’)’
fn-decl = tokfn [ patt ] = expr opt-prog
patt = idparm | idcons | ’(’ idcons [ patt ] ’)’
expr = tok | const | ’(’ [ expr ] ’)’
opt-prog =

| prog
tok = id | sym

A.3 Semantics

The declarations constituting a FLAIR program generate two sets of informa-
tion: the type information relates to the construction and grouping of data
values and the function information relates to function values, and thus the
relationships between data values.

A data declaration introduces new values, and an forms a grouping for all the
defined values. For each element of the right side of the declaration (separated by
|), the introduced values are of the form constructor args where constructor
is a new constructor identifier idcons and args are values of each of the types
type-expr respectively. Any values so generated and all the approximations to
them, are included in the data type identified by the data type name on the left
hand side of the definition. If any polymorphic variables are specified after the
type name, these may appear in the type expressions on the right hand side of
the declaration. Any given type name, and any given constructor name, may
only be introduced once in any scope in this way, and these names may not be
used in any other form of declaration in the same scope.

A type declaration introduces a new collection of values, as a set combination
of the sets of values as described in Chapter 5. As with data declarations, any
polymorphic variables introduced on the left hand side may appear in the type
expressions on the right hand side, although care must be taken not to violate
the rules laid down in Section 5.3. Any given type name may only be introduced
once in any scope in this way, and this name may not be used in any other form
of declaration in the same scope.

A type expression is a type name, as defined by a data or type declaration,
together with polymorphic variables or type expressions, which correspond to
the number of variables cited in the declaration. Any cited type variables must
have understood meanings at the point where the expression occurs.

A function declaration specifies that a particular symbol in the given scope
is to be associated with a function value. The right hand side is an expression
which may contain variables bound by their appearance in the patterns of this
(or any enclosing) definitions, as well as constants defined by other declarations.
The constants available to a function declaration may be extended by enclosing
more declarations in an inner block which has the same syntax and semantics as
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the program. Nested scopes may redefine function names by redeclaring them
in an inner scope. In this case, the definition used is the innermost one currently
in scope. This includes the definitions in the block associated with the current
expression, and all of the blocks nested outside the current expression, but not
any other blocks nested inside.

If two definitions are given for the same name in the same scope, then they
are treated as defining the function over different domains of values, and the de-
fined function is the intersection of the declared functions. If the definitions over-
lap, then the value of the function in the overlapping regions is implementation-
dependent, but will be one of the defined values, or an error. If no definition is
given for a particular value, then the function is undefined on that value.

A pattern consists of a template value: it is defined as a constructor applied
to arguments. The number and type of the arguments must match the number
and type of the arguments defined for the constructor in the data declaration.
The arguments may be patterns, or they may be parameters.

An expression may be a constant, a parameter, or a function value applied
to arguments. In the latter case, a value is identified by isolating the element
of the function range corresponding to the appropriate elements of the domain.
By currying, the application may result in a function value, a data value, or an
error value, depending on the number of arguments supplied.

A.3.1 Pattern Matching

Pattern matching is performed upon entering a function. There are three ob-
jectives in pattern matching: to select one of several equations to use to define
the value of the function; to ensure that this equation completely matches the
values being passed in to the function; and to uncover the bindings for all the
variables in the patterns so that they may be used in the expression on the right
hand side of the selected equation.

In order to do this, it is necessary to evaluate the arguments to the func-
tion so that the structure may be seen down to the same level as is visible in
the patterns, to ensure they match. This guarantees the second objective. In
doing this it is of course necessary to determine which is the correct pattern by
evaluating each of the arguments sufficiently far enough to decide which case
applies, thus fulfilling the first objective. Because the patterns are defined as a
constructor applied either directly to variables, or recursively to other patterns,
fulfilling the second objective automatically fulfills the third objective: once the
structure has been verified, the expressions have been evaluated sufficiently far
to extract all the variable bindings.

Flair does not lay down a particular method of selection beyond this, neither
does it specify a particular order in which the arguments and sub-arguments
should be evaluated. Chapter 3 however, does give a guide on how a generally
optimal solution may be generated, and gives an intermediate code for specifying
how pattern matching may proceed. We use this intermediate code to produce
a semantics for pattern matched functions.

The technique we use is to define a set of non-overlapping equations for the
function, based around the HESF definition for pattern matching as described
in Chapter 3. In place of the formal arguments or patterns to the function, we
write special symbols, _ for anything, ⊥ for bottom, x’ (where x is a variable)
to indicate any value which has not already appeared (which range of values
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can be made precise using the extended types of Chapter 5), and patterns such
as (Cons _ Nil) to represent sets of values.

The equations are generated from the HESF by examining this code. It
is in general, as has been noted, very repetitive, consisting of head-evaluations
followed by switches, with nested head-evaluations, ending in equation selection.
The translation proceeds by observing that each possible value (including ⊥)
can be inserted in place of the relevant argument during the switch. Unswitched
arguments are replaced by _, and * is replaced by a suitable variable x’. ⊥ is
always substituted for first, and will always produce the result of ⊥.

As an example, consider the HESF code for mink (see Figure 3.14), we can
construct the following equations. For brevity, En is written in place of the full
expression with appropriate substitutions.

mink ⊥ _ = ⊥
mink Zero _ = E1
mink (Succ _) ⊥ = ⊥
mink (Succ _) Nil = E2
mink (Succ _) (Cons _ ⊥) = ⊥
mink (Succ _) (Cons _ Nil) = E3
mink (Succ ⊥) (Cons _ (Cons _ _)) = ⊥
mink (Succ Zero) (Cons _ (Cons _ _)) = E4
mink (Succ n’) (Cons _ (Cons _ _)) = E5
mink (Succ ⊥) l’ = ⊥
mink (Succ Zero) l’ = E4
mink n’ ⊥ = ⊥
mink n’ Nil = E2
mink n’ (Cons _ ⊥) = ⊥
mink n’ (Cons _ Nil) = ⊥

These equations give a complete specification of the function mink for each
of the possible elements of the input domains.

A.4 Extended Type Extensions

In order to take advantage of the extended type notations of Chapter 5, it is
necessary to add extra cases to the definitions of type declarations (for edata,
sdata, etype and stype), and declarations (for the parameter declarations).
An extra production, for extended type expressions, is also added.

A parameter declaration declares the type of variables to be used in the
function definitions. This says that one or more variables are restricted to
holding values belonging to the specified type. Because no polymorphic variables
are globally bound, they may not be used in the type expression1. Any given
parameter name may only be introduced once in any scope in this way, and this
name may not be used in any other form of declaration in the same scope.

decl = . . .
| parm-decl

1Although see Section 5.8.2 on a possible interpretation of this, and further extensions to
the language
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type-decl = . . .
| edata idtype−name [ type-var ] =

idcons [ type-expr ] [ | idcons [ type-expr ]]
| sdata idtype−name [ type-var ] =

idcons [ type-expr ] [ | idcons [ type-expr ]]
| etype idtype−name [ type-var ] = ext-type-expr
| stype idtype−name [ type-var ] = ext-type-expr

parm-decl = idparm [ ’,’ idparm ] :: type-expr
ext-type-expr = type-expr

| ’(’ ext-type-expr ’)’
| ext-type-expr ’|’ ext-type-expr
| ext-type-expr ’&’ ext-type-expr
| ext-type-expr ’-’ ext-type-expr
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A.5 Syntax of Proofs

The lexical analysis of proofs is much like the analysis of FLAIR programs.
However, the symbol ‘ is valid as a character in identifiers. The objective
is to allow for qualified names such as ‘trees‘++ to be included in proofs.
These qualified names remove the normal dependency on and restrictions of
the scoping rules in FLAIR programs. The symbol @ introduces the notation
describing references to subexpressions in proofs. The behaviour of white space
is also different: an inner block starts after the symbol <==, which must always
be followed by a newline; blank lines are no longer relevant. The symbol <== by
itself on a line separates two inner blocks with the same parent. This is necessary
to separate two sub-proofs. Both sub-proofs and the <== symbol must have the
same indentation.

proof = flair-expr <== BREAK-LINE sp
step = idrule [ arg ] opt-rsp
arg = ’(’ [ arg ] ’)’

| id
| ref
| ’[’ ’]’
| ’[’ arg [ ’,’ arg ] ’]’

opt-rsp = BREAK-LINE
| <== BREAK-LINE rsp

rsp = sp <== rsp
| sp

sp = BEGIN-IND [ step ] END-IND

A.6 Extensions

For simplicity at some points in the text extensions to the basic FLAIR language
as described have been used.

Lists are not always quoted as applications of the constructor Cons to argu-
ments. Instead, display lists, ranges and ZF notation as found in Miranda [79]
are used.

Another extension used in the section on proof rules is conformal definitions.
In Flair, these are not supported; instead, the alternative of using first, second,
etc. functions in possible. However, while this simplifies the language, it makes
writing clear programs more complex, so in the text conformal definitions have
been used with their understood meaning being a translation back into FLAIR
as described above. For example, the definition

(x,y) = f w

would be transformed to

v = f w
x = first v
y = second v
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Appendix B

Simple Parser for the Flair
Language

This appendix contains a simple parser for the functional language Flair. Its
intent is not as part of a full compiler, but merely as a simple means of entering
programs for the algorithms in Appendices C and D. Some features of this
parser which are specifically not covered are:

• Robust syntax checking: some syntax checking is done, when not to do
it would either leave the parser confused, or would leave another function
acting after the parse confused.

• User-friendly error messages: again, the error messages provided indicate
the line which caused the error; in general the actual cause of the error is
not indicated.

• Type inference, type checking, undefined variables etc, are not handled.

Furthermore, some restrictions are placed on the Flair language, and imple-
mented by the parser:

• it is illegal to use the same parameter in two nested definitions (this is
because it is non-trivial to uniquely rename the parameters when lifting).

• it is only possible to define type information at the top level.

• polymorphism is currently ignored in the type dictionary

In these appendices, a package of sets and maps is assumed to be present.
These contain the usual functions associated with finite sets and finite maps
(for example, see [39]). The functions associated with sets are:

emptyset -- the empty set

insert x s -- insert x into s

remove x s -- remove x from s

union A B -- form the union of A and B

intersect A B -- form the intersection of A and B

setdiff A B -- form the set whose elements are in A, but not B

subset A B -- is A a subset of B ?

in x s -- is x a member of the set s ?

145
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listtoset l -- convert the list l into a set

settolist s -- convert the set s into a list

setsize s -- find the cardinality of the set s

The functions associated with maps are:

emptymap -- the empty map

apply m k -- the entry in m corresponding to key k

defaultapply v m k -- as apply, but return v if k not in m

update m k v -- produce new map, like m except key k has value v

updatelist m l -- update m using list of pairs l

owr M N -- overwrite entries in M with those in N

dom m -- recover set of keys in m

rng m -- recover set of values in m

domres m s -- restrict m to those keys in s

domsub m s -- subtract from m the keys in s

rngres m s -- restrict m to those values in s

rngsub m s -- subtract from m the values in s

maptolist m -- convert the map m to a list

listtomap l -- convert the list l into a map

mapsize m -- find the number of entries in the map m

The file fl.lit.m contains definitions concerned with the parsed, lifted repre-
sentation of a functional language.

> %include <local/maps>

> %include <local/oldsets>

In this version of the compiler, virtually all objects are tree structured.

The definition of trees is an identifier at the node, together with zero or

more subnodes. Identifiers are character strings. The null string is special

and reserved for internal use.

> ids == [char]

> trees ::= Tree ids [trees]

Programs are defined as a list of function definitions. This representation

assumes that all functions have been lifted to the outer level. Each function

definition is represented by one or more cases, each of which is an expression

in the form of an equality between the function name applied to zero or more

patterns and an expression representing the result of that case being applied.

A collected set of patterns is a list of lists of patterns, where each list of

patterns is the same length (the arity of the function). Such a collected set

of patterns consists of the patterns associated with each case of a function

definition.

> programs == [functions]

> functions == [cases]

> cases == exprs

> exprs == trees

> patts == [[trees]]

The file ptypes.lit.m contains definitions used by the parser while parsing and
lifting the program.

> %include <local/oldsets>

> %include <local/maps>

> %include "fl.lit"

A parsed program (before and during lifting) is represented as a list of
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blocks, each block consisting of a statement (a defining equation, a

declaration, or a type definition) and any associated inner definitions.

renames defines a type used for renaming functions when lifting: the key is the

original name, while the value is a pair consisting of the new name and the

list of arguments (old free variables). ctypes defines the grouping of

characters which happens during lexical analysis, and also the state of the

lexical analyser at any point.

> blocks ::= Block stats [blocks]

> stats ::= DefEqn exprs | Decl exprs | TypeDefn exprs

> renames == maps ids (ids,[ids])

> ctypes ::= None | Alpha | Symbol | Punc

The following functions are used to identify the type of any given statement.

> isdef (DefEqn s) = True

> isdef x = False

> isdecl (Decl s) = True

> isdecl x = False

> istdef (TypeDefn s) = True

> istdef x = False

The file types.lit.m provides definitions for the type dictionary.

> %include <local/maps>

> %include <local/oldsets>

> %include "fl.lit"

Type data comes in five varieties: constructors (giving their arity; type

definitions (as a list of simple patterns); and parameters (together with an

associated typename); type synonyms; and function declarations. The simple

patterns in a type definition consist of a constructor name, together with a

list of typenames. The list of typenames should be the length of the arity of

the constructor. The type dictionary is a map of names to data.

> spatts ::= Simple ids [ids]

> typedata ::= Cons num | PattDef [spatts] | Parm ids |

> Type exprs | TDecl exprs

> typedicts == maps ids typedata

iscons checks whether a given name is recognised as a constructor in the type

dictionary passed in.

> iscons :: typedicts->ids->bool

> iscons types n =

> check td

> where

> td = defaultapply (Parm "") types n

> check (Cons n) = True

> check t = False

isparm checks whether a given name is recognised as a parameter in the

specified type dictionary

> isparm :: typedicts->ids->bool

> isparm types s =

> check td

> where

> td = defaultapply (Cons 0) types s

> check (Parm v) = True

> check t = False

lazyparm tests whether a parameter s is of a type which contains the value
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bottom (i.e. may not be evaluated for pattern-matching).

> lazyparm :: typedicts->ids->bool

> lazyparm types s

> = False, iscons types s

> = member sps (Simple "bottom" []), isparm types s

> = error (s++" is not cons or parm"), otherwise

> where

> (PattDef sps) = apply types tname

> (Parm tname) = apply types s

arity returns the arity of a given constructor c

> arity :: typedicts->ids->num

> arity types c =

> n

> where

> (Cons n) = defaultapply (Cons 0) types c

The file flair.lit.m contains the top-level definition of the Flair compiler.

> %include <local/oldsets>

> %include <local/maps>

> %include "fl.lit"

> %include "ptypes.lit"

> %include "types.lit"

> %include "gcode.lit"

> %include "hesf.lit"

> %include "tables.lit"

> %include "parse.lit"

> %include "pm.lit"

> %include "presel.lit"

> %include "tdata.lit.m"

flair compiles a program to produce G-Code.

> flair f =

> print ++ chars ++ gcodepr gcode

> where

> (fns,td) = parse f

> gcode = compile pre sel (settolist (rng fns)) td

The file parse.lit.m handles the job of parsing the program. It uses the
subsidiary files lexer.lit.m and lift.lit.m to do this.

> %include <local/oldsets>

> %include <local/maps>

> %include "fl.lit"

> %include "ptypes.lit"

> %include "types.lit"

> %include "lexer.lit"

> %include "lift.lit"

> %include "support.lit"

parse produces a list of functions and a type dictionary from a single string,

representing the user program. The first step is to break the string down into
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lines, then to apply the lexer function to each of the lines. Each of the

resulting parsed lines consists of an indent token together with the remaining

tokens on the line. The indent token may be used to extract the block

structure, and simultaneously the lines may be grouped together and parsed.

This results in the block structured program b1. The type information may be

extracted, and statements in the program associated with it disposed of. This

gives rise to the type dictionary td, and a block-structuted program consisting

entirely of defining equations, b2. This program may then be lifted to give a

list of defining equations, and then the functions may be grouped together into

a map from function names to definitions.

> parse f =

> (fns,extr_parms (dom fns) td)

> where

> b1 = extr_blocks (map lexer (lines f))

> (td,b2) = extr_typeinfo b1

> b3 = lift td b2

> fns = extr_fns b3

extr_blocks checks that the returned value from block is accurate -- that means

that no characters remain to be processed, and the rules on inner blocks have

been observed.

> extr_blocks f

> = error "blocking incorrect", r ~= []

> = error "illegal nested statements", ~ and (map (defblkonly True) bl)

> = bl, otherwise

> where

> (bl,r) = block f

block takes a list of lines of tokens, disposes of all those which are either

blank or comments (a comment is any line which starts in column 1). If no lines

remain, then no blocks may be formed. Otherwise, the remaining lines are

grouped according to indentation, and finally any lines not grouped are passed

to a recursive call of block. Any lines with less indentation than the first

line of this block are returned as unprocessed.

> block ls

> = ([],[]), indls = []

> = (b:bs,remls), otherwise

> where

> indls = dropwhile ind0 ls

> k = ind (hd indls)

> thesels = [ l | l<-indls; ind l = 0 \/ ind l >=k]

> remls = drop (#thesels) indls

> (b,rem1) = group k thesels

> (bs,empty) = block rem1

group groups lines according to the following simple system: any lines with

greater indent that the first, and immediately adjacent (not separated by blank

lines or comments) are taken to be a continuation of the first line. Any lines

with greater indent that the first but separated by a blank line or a comment

from it, form an inner block, processed recursively by block. Any lines of

equal indent to this one are returned as unprocessed.

> group k ls =

> (Block (parse_expr (concat conts)) indbs,rem2)

> where

> conts = map tl (hd ls:takewhile iscont (tl ls))

> rem1 = drop (#conts) ls

> inds = takewhile isind rem1

> rem2 = drop (#inds) rem1
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> iscont l = ind l > k

> isind l = ind l = 0 \/ ind l > k

> (indbs,remind) = block inds

extr_typeinfo recovers all the type information from a block. This consists of

finding all declarations and type definitions and generating the appropriate

structures. All the definitions must appear at the top level. The various cases

are identified and collated, and any type information statements are removed

from the new block which is generated, leaving just the defining equations. The

final step in collecting the type information is to extract the constructor

definitions from the type definitions by patterns.

> extr_typeinfo b =

> (extr_cons td,nb)

> where

> (td,nb) = collate (listtomap []) [] b

> extr_cons m =

> updatelist m (get_cons [simps | (t,PattDef simps) <- maptolist m])

> get_cons l = mkset [(c,Cons (#a)) | (Simple c a) <- concat l]

> collate typ rest [] = (typ,reverse rest)

> collate typ rest (Block s ibs:bs) =

> collate newtyp newrest bs

> where

> newtyp

> = typ, isdef s

> = updatelist typ (zip2 vids (repeat (TDecl t))), isdecl s

> = update typ f (PattDef simps), istdef s

> where

> (Decl (Tree "::" [Tree "," vs,t])) = s

> vids = [v | (Tree v []) <- vs]

> (TypeDefn (Tree "=" [Tree f as,Tree "|" patts])) = s

> simps = [ Simple f [v|(Tree v [])<-as] | (Tree f as) <- patts]

> newrest

> = Block s ibs:rest, isdef s

> = rest, otherwise

extr_parms converts declarations which appear to be of function types, but for

which no function is defined into parameter declarations.

> extr_parms s td =

> listtomap (

> [ (v, Parm t) | (v,TDecl (Tree t [])) <- tdl; ~in t s]++

> [ (v, te) | (v,te) <- tdl; ~ist te \/ ~in (gt te) s])

> where

> tdl = maptolist td

> ist (TDecl (Tree t [])) = True

> ist te = False

> gt (TDecl (Tree t [])) = t

extr_fns takes a lifted block containing only function defining equations, and

collates them to form a map from function names to a list of defining

equations.

> extr_fns b =

> collate (listtomap []) b

> where

> collate fns [] = fns

> collate fns (Block s []:bs) =

> collate newfns bs

> where

> newfns

> = update fns f (defs++[Tree "=" [Tree f as,t]]), isdef s
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> = fns, otherwise

> where

> (DefEqn (Tree "=" [Tree f as,t])) = s

> defs = defaultapply [] fns f

parse_expr takes a list of symbols, identifies which case applies, and then

attempts to parse the symbols into an internal structure.

> parse_expr syms

> = error "no tokens on line", syms = []

> = pdata, member datas (hd syms)

> = pdecl, member syms declsym

> = pdefn, member syms defnsym

> where

> datas = ["data","type"]

> declsym = "::"

> defnsym = "="

The case for data declarations is

data type parm* = Cons types { | Cons types } *

> pdata =

> TypeDefn (Tree "=" [Tree (syms!1) [Tree p []|p<-ps],Tree "|" patts])

> where

> ps = takewhile (~= "=") (drop 2 syms)

> patts = gtypes (drop (#ps+3) syms)

> gtypes [] = []

> gtypes ss

> = serror syms, hd ss = "|" \/ rs ~= []

> = e:es, otherwise

> where

> (e,rs) = ptype vs

> vs = takewhile (~="|") ss

> es = gtypes (drop (#vs+1) ss)

The case for function and parameter declarations is

var {, var} * :: type {type}* {-> type {type}* }*

> pdecl =

> Decl (Tree "::" [Tree "," [Tree v [] | v<-vars],tname])

> where

> vars

> = serror syms, #vs mod 2 = 0 \/ or [v ~= "," | v<-evens vs]

> = odds vs, otherwise

> where vs = takewhile (~="::") syms

> tname = pftype (drop (2*#vars) syms)

The case for defining equations is

f arg * = fbex

[ where arg = fbex ; fbex = term term * ; term = name | ’(’ fbex ’)’ ]

> pdefn =

> DefEqn (Tree "=" [lhs,rhs])

> where

> lhssyms = (takewhile (~="=") syms)

> rhssyms = drop (#lhssyms+1) syms

> lhs = pfbex lhssyms

> rhs = pfbex rhssyms
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> pfbex ss

> = serror syms, rs ~= []

> = Tree h as, otherwise

> where

> (es,rs) = fbex ss

> (h,as) = despine es

> fbex ss

> = ([],ss), hd ss = ")"

> = ([e],[]), rs = []

> = (e:es,rs1), otherwise

> where

> (e,rs) = term ss

> (es,rs1) = fbex rs

> term ss

> = (Tree (hd ss) [],tl ss), hd ss ~= "(" & hd ss ~= ")"

> = (Tree h as,tl rs), hd ss = "(" & rs ~= [] & hd rs = ")"

> = serror syms, hd ss = "(" & (rs = [] \/ hd rs ~= ")")

> where

> (es,rs) = fbex (tl ss)

> (h,as) = despine es

> despine (Tree h []:ts) = (h,ts)

> despine (Tree h es:ts) = (h,es++ts)

The case for a type declaration is handled by the two definitions

t1 ::= t2 {-> t2}*

t2 ::= typename typename * | ’(’ t1 ’)’

> pftype ss

> = serror syms, rs ~= []

> = t, otherwise

> where (t,rs) = ptype ss

> ptype ss

> = serror syms, #ts < 1

> = (uniq ts,rs), #ts = 1

> = (Tree "->" ts,rs), #ts > 1

> where (ts,rs) = ptypes ss

> ptypes ss

> = ([e],[]), rs1 = []

> = (e:es,rs2), hd rs1 = "->"

> = ([e],rs1), hd rs1 = ")"

> where

> (e,rs1) = ptype2 ss

> (es,rs2) = ptypes (tl rs1)

> ptype2 ss

> = (e,tl rs), hd ss = "(" & rs ~= [] & hd rs = ")"

> = (Tree (tns!0) [Tree t [] | t<-tl tns],drop (#tns) ss), otherwise

> where

> (e,rs) = ptype (tl ss)

> tns = takewhile isname ss

> isname s = s~="->" & s~=")" & s~= "("

defblkonly checks that only defining equations are allowed to have or appear in

inner blocks.

> defblkonly f (Block (DefEqn ex) bs) = and (map (defblkonly False) bs)

> defblkonly f (Block s []) = f

> defblkonly f (Block s bs) = False

ind0 tests whether a line starts in column 1.

ind returns the indent of a line.
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> ind0 t = #t = 1 \/ #(hd t) = 0

> ind t = #(hd t)

The file lexer.lit.m handles the lexical analysis of Flair programs.

> %include <local/oldsets>

> %include <local/maps>

> %include "fl.lit"

> %include "ptypes.lit"

lexer analyses a string (assumed to be a single line of source text) and

produces a list of tokens, each token being simply a string of characters.

The first token is always the initial space; any remaining spaces on the line

are ignored.

> lexer s = takewhile (=’ ’) s:lex "" None (dropwhile (=’ ’) s)

lex produces the current token by extending the token w until no more

characters may be added. The end comes when there are no more characters in the

string, or when a character of different type (e.g Symbol vs Alpha) is

encountered, or when any character of type Punc or None is encountered.

> lex w t []

> = [reverse w], w ~= ""

> = [], otherwise

> lex w t (c:s)

> = reverse w:lex "" newt s, newt = None & w~=""

> = reverse w:lex [c] newt s, (t ~= newt \/ t = Punc) & w~=""

> = lex "" newt s, newt = None

> = lex [c] newt s, (newt ~= t \/ t = Punc)

> = lex (c:w) t s, otherwise

> where

> newt = stype c

stype analyses a single character and reports on its type. It does so by

consulting an array which gives the type for each ASCII character. Backquote is

used internally so is disallowed. Any disallowed character (. = None) is

assumed to be equivalent to a space character (except when it occurs at the

beginning of a line).

> stype c =

> ctype!(code c)

> where

> ctype = map ccode cct

> ccode ’.’ = None

> ccode ’s’ = Symbol

> ccode ’p’ = Punc

> ccode ’a’ = Alpha

>||

>|| !"#$%&’()*+,-./0123456789:;<=>?

>|| @ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_

>|| ‘abcdefghijklmnopqrstuvwxyz{|}~

> cct =

> "................................" ++

> ".sssssssppsspsasaaaaaaaaaassssss" ++

> ".aaaaaaaaaaaaaaaaaaaaaaaaaapsps." ++

> ".aaaaaaaaaaaaaaaaaaaaaaaaaapsps."

serror produces a syntax error.

> serror syms = error ("Syntax Error: line"++concat [" " ++ s | s<-syms])
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The file lift.lit.m is responsible for the lifting of any inner blocks, together
with any associated renaming and adding parameters to function definitions.

> %include <local/oldsets>

> %include <local/maps>

> %include "fl.lit"

> %include "ptypes.lit"

> %include "types.lit"

lift takes a list of blocks, together with their inner blocks and lifts all the

defining equations in the inner blocks (nothing else is permitted there) to the

enclosing block. At the same time, all the lifted definitions are renamed by

prepending the name of the enclosing function and a backquote. The free

variables are collected and added to the definition, and all the uses of the

function are renamed and reworked to include the new arguments.

> lift td [] = []

> lift td (Block s bs:rbs) =

> Block (renstat m s) []:lift1 m bs1++lift td rbs

> where

> bs1 = lift td bs

> (DefEqn (Tree "=" [Tree f as,ex])) = s

> m = renmap f (fvs td as) bs1

> fvs td as =

> [ v | (Tree v [])<-as; ~iscons td v]++

> concat [ fvs td ras | (Tree c ras)<-as]

renmap builds the renaming map for all the functions in a block. It takes the

name of the enclosing function and the free variables in the patterns of the

defining equation. It uses this to build a map from names to new names and

additional arguments. There should be a dependency analysis in here so that

only the needed names are included.

> renmap f vs [] = listtomap []

> renmap f vs (Block (DefEqn (Tree "=" [Tree g as,ex])) []:bs) =

> update m g (f++’‘’:g,vs)

> where

> m = renmap f vs bs

renstat renames the defining equation which introduces the inner block

> renstat m (DefEqn (Tree "=" [Tree f as,ex])) =

> (DefEqn (Tree "=" [Tree f as,renex m ex]))

renex renames a right hand side expression

> renex m (Tree h as) =

> Tree newh ([Tree a [] | a<-newas]++renas)

> where

> (newh,newas) = defaultapply (h,[]) m h

> renas = [ renex m a | a<-as ]

rendef renames an entire inner definition.

> rendef m (DefEqn (Tree "=" [Tree f as,ex])) =

> (DefEqn (Tree "=" [Tree g (newas++as),renex m ex]))

> where

> (g,exas) = defaultapply (f,[]) m f

> newas = [Tree a [] | a<-exas]

lift1 renames and extracts all the definitions from an inner block.
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> lift1 m [] = []

> lift1 m (Block s bs:rbs) =

> Block (rendef m s) bs:lift1 m rbs

The file tdata.lit.m contains test data for the parser, and for the other ap-
pendices.

> %include "tables.lit"

Test Program: this program supplies the functions mirror, reverse, and mink,

along with the required data types and supporting functions.

> prog = "\

> data trees k = Empty | Tree k ints k\n\

> data lists = Nil | Cons ints lists\n\

> data ints = Zero | Succ ints\n\

>\n\

> t1, t2 :: trees ints\n\

> i,a,b,k :: ints\n\

> l :: lists\n\

>\n\

> resexpr =\n\

> show (mink (Succ (Succ (Succ Zero)))\n\

> (Cons Zero (Cons (Succ (Succ Zero)) (Cons (Succ Zero) Nil))))\n\

>\n\

> mirror :: (trees ints)->(trees ints)\n\

> mirror (Tree t1 i t2) = Tree (mirror t2) i (mirror t1)\n\

>\n\

> reverse Nil = Nil\n\

> reverse (Cons i l) = append (reverse l) i\n\

>\n\

> mink Zero l = Zero\n\

> mink k Nil = Zero\n\

> mink k (Cons a Nil)= a\n\

> mink (Succ Zero) l =\n\

> hd l\n\

> mink (Succ k) (Cons a (Cons b l)) =\n\

> mink k (if (<= a b) a b) l\n\

>\n\

> <= Zero k = True\n\

> <= k Zero = False\n\

> <= (Succ k) (Succ l) = <= k l\n\

>\n\

> if True t f = t\n\

> if False t f = f\n\

>\n\

> hd (Cons h l) = h\n\

>\n\

> show Zero = Cons zchar Nil\n\

> show (Succ k) = append (show k) qchar\n\

>\n\

> append Nil c = Cons c Nil\n\

> append (Cons c1 s) c =\n\

> Cons c1 (append s c)\n\

>"

The print function is used to output a list of characters to the terminal. It’s

use of the write instruction (which involves a side-effect) makes it

non-functional.

> print = "\

>FUNCTION result\n\
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>\theap 2\n\

>\tstack 1\n\

>\tnew _p\n\

>\tfill APPLY0\n\

>\tfill resexpr\n\

>\tpush _p\n\

>\tjump print\n\

>\n\

>FUNCTION print\n\

>\theap 2\n\

>\tstack 1\n\

>\targs 1\n\

>\tpop p1\n\

>\tpush print1\n\

>\tenter p1\n\

>\n\

>\tdata 1 0\n\

>RETURN print1\n\

>\tpop print1\n\

>\ttry _tNil\n\

>\tswitch print2\n\

>\tuntry _tNil\n\

>\ttry _tCons\n\

>\tswitch print3\n\

>\tuntry _tCons\n\

>\tjump _misscase\n\

>\n\

>CASE print2\n\

>\twrite 10\n\

>\tstop 0\n\

>\n\

>CASE print3\n\

>\tget _tmp p1 p2\n\

>\tpush p2 print4\n\

>\tenter p1\n\

>\n\

>\tdata 2 2\n\

>RETURN print4\n\

>\tpop print4 p2\n\

>\tget _tmp d1\n\

>\twrite d1\n\

>\tpush p2\n\

>\tjump print\n\

>\n\

>\tdata 2 0\n\

>LABEL APPLY0\n\

>\tget APPLY0 d1\n\

>\tjump d1\n\

>\n\

>\tdata 3 4\n\

>LABEL APPLY1\n\

>\tstack 1\n\

>\tget APPLY1 d1 p1\n\

>\tpush p1\n\

>\tjump d1\n\

>\n\

>\tdata 4 12\n\

>LABEL APPLY2\n\

>\tstack 2\n\

>\tget APPLY2 d1 p1 p2\n\

>\tpush p2 p1\n\

>\tjump d1\n\
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>\n\

>\tdata 2 2\n\

>LABEL INDIRECT\n\

>\tget INDIRECT p1\n\

>\tenter p1\n\

>\n"

Characters are supported directly, by use of two constructor functions, zchar

and qchar, to represent the characters 0 and ’ respectively.

> chars = "\

>EQUATE _tchar 999\n\

>\n\

>\tdata 2 0\n\

>LABEL _char\n\

>\treturn _tchar\n\

>\n\

>FUNCTION zchar\n\

>\tnew _p\n\

>\tfill _char\n\

>\tfill 48\n\

>\tenter _p\n\

>\n\

>FUNCTION qchar\n\

>\tnew _p\n\

>\tfill _char\n\

>\tfill 39\n\

>\tenter _p\n\

>\n"

The tables gentab and seltab are the generated and selected tables for the

function mink.

> gentab =

> Table [(["Zero",""],Eqns [1]),(["Zero","Nil"],Eqns [1,2]),

> (["Zero","Cons"],Table [(["",""],Eqns [1]),(["","Nil"],Eqns [1,3])]),

> (["",""],Eqns []),(["","Nil"],Eqns [2]),(["","Cons"],Table [(["","Nil"],

> Eqns [3])]),(["Succ",""],Table [(["Zero"],Eqns [4])]),(["Succ","Nil"],

> Table [([""],Eqns [2]),(["Zero"],Eqns [2,4])]),(["Succ","Cons"],

> Table [(["","","Nil"],Eqns [3]),(["","",""],Eqns []),(["","","Cons"],

> Table [(["",""],Eqns [5])]),(["Zero","","Nil"],Eqns [3,4]),

> (["Zero","",""],Eqns [4]),(["Zero","","Cons"],Table [(["",""],

> Eqns [4,5])])])]

> seltab =

> Table [(["Zero",""],Eqns [1]),(["Zero","Nil"],Eqns [1]),(["Zero","Cons"],

> Table [(["",""],Eqns [1]),(["","Nil"],Eqns [1])]),(["",""],Eqns []),

> (["","Nil"],Eqns [2]),(["","Cons"],Table [(["","Nil"],Eqns [3])]),

> (["Succ",""],Table [(["Zero"],Eqns [4])]),(["Succ","Nil"],

> Table [([""],Eqns [2]),(["Zero"],Eqns [2])]),(["Succ","Cons"],

> Table [(["","","Nil"],Eqns [3]),(["","",""],Eqns []),(["","","Cons"],

> Table [(["",""],Eqns [5])]),(["Zero","","Nil"],Eqns [3]),(["Zero","",""],

> Eqns [4]),(["Zero","","Cons"],Table [(["",""],Eqns [4])])])]

basetd is some sample test data for the function fbasetypes.

> basetd = "\

> data int = Z | S nat | P nonpos\n\

> data nat = Z | S nat\n\

> data nonpos = Z | P nonpos\n\

> i :: int\n\

> n :: nat\n\
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> np :: nonpos\n\

>"

inftd is some sample test data for the function testcycle

> inftd = "\

> data p = Bottom | A x q\n\

> data q = B r y\n\

> data r = C p\n\

>\n\

> data s = A x t\n\

> data t = Bottom | B t y | C s\n\

>\n\

> data x = Z | S x\n\

> data y = N | L x y\n\

>"



Appendix C

Code Generation for Flair

This appendix provides code to compile a parsed, lifted program, stored as
a list of function definitions and a type dictionary, into G-Code. It handles
the separation of patterns, the generation of pattern-matching code, and the
generation of code to evaluate expressions.

G-Code is represented as a Miranda algebraic type in the file gcode.lit.m,
together with a function showhesf for printing it (and thus preparing it for
input to the interpreter of Appendix E.

> gcode ::=

> Function [char] | Label [char] |

> Continue [char] | Case [char] |

> Data num num | Heap num | Stack num | Args num |

> Storenode [char] | Get [char] | Put [char] |

> New [char] | Fill [char] |

> Pop [char] | Push [char] |

> Try [char] | Swi [char] | Untry [char] |

> Jump [char] | Enter [char] | Return [char] |

> Equate [char] num

> gcodepr gcs =

> lay (filter (~="") (map gcpr gcs))

> where

> gcpr (Function s) = "\nFUNCTION "++s

> gcpr (Case s) = "\nCASE "++s

> gcpr (Data s l) = "\n\tdata "++show s++" "++show l

> gcpr (Label s) = "LABEL "++s

> gcpr (Continue s) = "CONTINUE "++s

> gcpr (Heap k)

> = "\theap "++show k, k>0

> = "", otherwise

> gcpr (Stack k)

> = "\tstack "++show k, k>0

> = "", otherwise

> gcpr (Args k)

> = "\targs "++show k, k>0

> = "", otherwise

> gcpr (Storenode s) = "\tsavenode "++s

> gcpr (Get s) = "\tget "++s

> gcpr (Put s) = "\tput "++s

> gcpr (New s) = "\tnew "++s

> gcpr (Fill s) = "\tfill "++s

> gcpr (Pop s) = "\tpop "++s

159
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> gcpr (Push s) = "\tpush "++s

> gcpr (Try s) = "\ttry "++s

> gcpr (Swi s) = "\tswitch "++s

> gcpr (Untry s) = "\tuntry "++s

> gcpr (Jump s) = "\tjump "++s

> gcpr (Enter s) = "\tenter "++s

> gcpr (Return s) = "\treturn "++s

> gcpr (Equate s i) = "\nEQUATE "++s++" "++show i

The file hesf.lit.m contains the definition of HESF intermediate code, and a
suitable display function showhesf.

> %include <local/maps>

> %include <local/oldsets>

> %include "fl.lit"

> %include "support.lit"

HESF code is a compact means for representing pattern matching code. There

are a total of four instructions, although generally only three are used.

Head head evaluates a given sub-expression of the argument list. Eqn

specifies that pattern matching has finished, and a particular case of the

function has been selected for execution. Switch handles the distribution of

cases after an evaluation, the code to be executed depending on the head

constructor of the evaluated expression. Full fully evaluates a given

sub-expression of the argument list. The sub-expression is identified by a

list of numbers, indicating which element of the list of sub-expressions is

to be chosen at each stage.

> posn == [num]

> hesf ::= Head posn hesf | Eqn num | Switch [(ids,hesf)] | Full posn hesf

showhesf pretty-prints HESF code

> showhesf h = lay (sh h)

> sh (Eqn r) = [’E’:show r]

> sh (Head p h) = (’H’:show p):sh h

> sh (Full p h) = (’F’:show p):sh h

> sh (Switch cs) =

> concat [indent 4 ((prstar i ++ " : " ++ hd s):tl s) |

> (i,h) <- cs; s <- [sh h]]

The file tables.lit.m support the tables used for resolving overlapping equa-
tions.

> %include <local/maps>

> %include <local/oldsets>

> %include "fl.lit"

> %include "support.lit"

Tables are used to represent the coverage of patterns over equations. There are

two possibilities : there are no constructors to match against, in which case

all possible equations are represented by a list; or constructors may be

matched, which is represented by a table whose indices are the possible

constructor combinations, together with a table representing

the possible matching of the arguments to the constructors.

> tables ::= Eqns [num] | Table [([ids],tables)]

showtable displays a table, using the sub-function showtab.

> showtable tab = lay (showtab tab)
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> showtab (Eqns ks) = [show ks]

> showtab (Table vs) =

> concat [(concsp (map prstar c)++":"):(indent 4 (showtab t)) | (c,t)<-vs]

The file pm.lit.m generates the code and resolves the pattern matching.

> %include <local/maps>

> %include <local/oldsets>

> %include "restrict.lit"

> %include "fl.lit"

> %include "types.lit"

> %include "hesf.lit"

> %include "gcode.lit"

> %include "tables.lit"

> %include "support.lit"

Compile compiles an entire program, given a program represented as a list of

lists of defining equations, an appropriate type dictionary, and two functions

(pre and sel) used to massage the patterns to be in standard form, and then to

reduce the generated table to produce the selected table.

> compile :: (typedicts->patts->patts)->(tables->tables)->

> programs->typedicts->[gcode]

> compile pre sel prog types =

> compdata types ++

> concat [compfunc pre sel types i p | (i,p)<-zip2 [1..] prog]

Compdata compiles all data type definitions to produce three items: a tag

value, a code pointer, and a constructor function.

> compdata types =

> concat [compdt c n i |

> ((c,n),i)<-zip2 [(c,n) | (c,Cons n)<-maptolist types] [0..]]

> where

> compdt c n i =

> tag:code++cons

> where

> tag = Equate ("_t"++c) i

> code = [mkdata (n+1),Label ("_p"++c),Return ("_t"++c)]

> cons =

> [Function c,Args n,Heap (n+1),New "_tmp1",Fill ("_p"++c)]++

> concat [[Pop "_tmp2",Fill "_tmp2"] | z<-[1..n]]++

> [Enter "_tmp1"]

Compfunc compiles one function in a program. It first asserts that the function

definition and type dictionary are consistent and valid, and if not, an error

is produced. Otherwise, a function header is produced, followed by code to

perform pattern matching, and code to evaluate each of the expressions.

The pattern matching code is produced in two stages.

First, an intermediate form HESF code is produced based on the pattern

intersections, together with type restrictions (which are discarded).

Secondly, the HESF code is translated into G-code.

pdmap is a mapping from positions in the patterns to G-Code variable names.

vmaps is a list of mappings (one per defining equation) from source variable

names to G-Code variable names.

funcno is a function number used in the creation of unique entry point names.

eps, args, and fvs are lists of entry point names, argument variabel names, and

free variables in the patterns.

> compfunc :: (typedicts->patts->patts)->(tables->tables)->typedicts

> ->num->functions->[gcode]
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> compfunc pre sel types funcno func

> = error "Illegal Function Definition", ~ assert

> = intro ++ pattcode ++ eqncode, otherwise

> where

> assert = True

> intro = [Function f,Args nargs,Stack estack]++pops

> (pattcode,pstack,pheap,eps1) =

> genpattcode hlist types funcno pdmap [] hec eps args

> (eqncode,estack,hlist,eps2) =

> geneqncode fvs (zip3 [mke funcno e | e<-[1..]] eqs vmaps) eps1

> (hec,res) = comppatt pre sel types ps

> (Tree "=" [Tree f p1,eq1]) = hd func

> ps = [ p | Tree "=" [Tree f p,eq] <- func]

> eqs = [ eq | Tree "=" [Tree f p,eq] <- func]

> nargs = #(hd ps)

> pops = [Pop arg | arg <- args]

> eps = [mke funcno e | e<-[#eqs+1..]]

> args = [mkv v | v<-[1..nargs]]

> fvs = [mkv v | v<-[nargs+(mapsize pdmap)+1..]]

> pdmap = bpdmap ps nargs

> vmaps = [bvmap types pdmap p | p<-ps]

comppatt takes two functions, a type dictionary, and a two-dimensional array of

patterns, and produces HESF code to select an appropriate equation, together

with restrictions on the types of the free variables in the equations. The

restrictions are represented as an expression. The first function taken by

comppatt, pre, is a function to be applied to the patterns before they are

processed. This allows language-specific irregularities in the patterns (for

example, underapplied constructors) to be removed before pattern matching

takes place. The function buildtab is used on the resulting patterns to build

a table representing the coverage of the patterns across the equations. The

second argument function, sel, is then used to select the desired coverage

for the table. In general, the equations will overlap somewhat, and so two

equations will appear to apply to the same set of values. The table resulting

from the selection function must be the same shape as the input table, but

no entry may have more than one equation applying to a single set of values.

However, the relationships between values and equations is not otherwise

limited: that is, the resulting equation did not need to be in the original

list for that set of values, and it is possible to select no equation where

one or more were originally present.

A list of parameter/equation references is generated (called lparms) by

examining each position of each pattern in turn and deciding whether or not

it contains a lazy parameter. The result is a list of (equation,position)

pairs where the position is a list of argument positions.

> comppatt :: (typedicts->patts->patts)->(tables->tables)->

> typedicts->patts->(hesf,[exprs])

> comppatt pre sel types ps

> = error "Illegal selection function", ~ assert

> = ( genhesf types ps1 lparms [[i] | i<-[1..#(hd ps1)]] table2,

> genrestr types table1 table2 ps1 ), otherwise

> where

> ps1 = pre types ps

> table1 = buildtab types [] [1..#ps1] ps1

> table2 = sel table1

> assert = checkstruct table1 table2

> lparms = [(e,pn) | (e,p)<-zip2 [1..] ps1; pn<-idlp [] p]

> idlp r p = concat [id1 (r++[i]) p1 | (i,p1)<-zip2 [1..] p]

> id1 r (Tree h as)

> = [r], lazyparm types h
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> = idlp r as, otherwise

checkstruct checks that the structure of two tables is identical, that

the second table never allows more than one equation to be selected by the

same set of values, and that any equation selected by table 2 must also have

been selected by table 1.

> checkstruct :: tables->tables->bool

> checkstruct (Eqns ks) (Eqns ls) = (#ls <= 1) & ((ls--ks) = [])

> checkstruct (Table us) (Table vs) =

> and [ ui = vi & checkstruct ut vt | ((ui,ut),(vi,vt)) <- zip2 us vs]

> checkstruct tab1 tab2 = False

buildtab constructs a table of equation coverage over the patterns. Firstly,

the head constructors for each of the cases for each argument position are

collected together in a list of lists, idl, and the coverage determined by

taking all the possible combinations of constructors. Parameters are not

included directly in this process, but if any are used in a given argument

position, the special constructor "" is added to produce the coverage

(performed by exparm). If no constructors appear anywhere in any of the

patterns, then all equations apply to all cases of the patterns. These

equation numbers are given in the list ks. The list es holds equation numbers

for which it has already been decided that they hold over all equations with

the given coverage (initially ks is all equations; es is no equations).

If at least one constructor appears in at least one argument position,

buildtab is called recursively with new arguments. These arguments are

calculated in the function rbtab based on the individual elements of the

coverage. The coverage and inner tables are then combined to produce the

final result table. The length of the lists ks and ps are always the same,

since one is a list of equation numbers, and the other the list of patterns

for the equations to be matched.

The new list of universal equations (es) is the old list, extended by all

those which involve no constructors in their patterns (all their arguments are

free variables). The new list of considered equations (ks) is the old list,

with the exception of those, which, in one of their arguments, have a head

constructor which differs from that given in the same position of the

coverage. The new list of patterns is the concatentation of the arguments of

the patterns for the equations which are to be used.

> buildtab :: typedicts->[num]->[num]->patts->tables

> buildtab types es ks ps

> = Eqns (es++ks), #idl = 0

> = Table [(rep (#idl) "",Eqns (es++ks))], and [ i = [""] | i <- idl ]

> = Table [(cov,rbtab cov) | cov<-coverage], otherwise

> where

> idl = [ mkset [exparm h | (Tree h as) <- l] | l <- transpose ps ]

> exparm h

> = h, iscons types h

> = "", otherwise

> coverage = xprod idl

> rbtab cov =

> buildtab types (es++newes) newks newps

> where

> newes = [ e | (e,p) <- zip2 ks ps;

> and [ ~iscons types h | Tree h as <- p ]]

> newks = [ k | (k,p) <- zip2 ks ps; and [ ~iscons types h \/ h = c |

> (c,Tree h as)<-zip2 cov p]] -- newes

> newps = [ concat [ exargs c t | (c,t) <- zip2 cov p ] |

> (k,p) <- zip2 ks ps; member newks k]

> exargs c (Tree h as)
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> = as, iscons types h

> = [], c = ""

> = rep (arity types c) (Tree "" []), otherwise

genhesf generates HESF code from a table. If the table represents a single

equation and there are no further free variables which need to be extracted

from that equation (and it is certain that that equation matches), then that

equation is selected, otherwise an argument is evaluated, and a switch

performed depending on the resulting constructor. Which column to switch upon

is determined by calling choosecol, and the appropriate column position is

easily determined by looking up the list of positions passed in as an argument.

The list of cases for the HESF switch statement is a list of pairs, each

possible constructor for that argument position, together with HESF code

generated by recursively calling genhesf with new position and table

information. The new position data is calculated by throwing away the item at

the selected position and replacing it with one new position name for each

argument to the constructor. The new table is calculated by splitting up the

old table by constructor, and discarding the old coverage entry for the

selected argument position. If the entry for that position is an equation,

nothing more is done. However, if the entry is a table, then the entries in the

table corresponding to the selected constructor (which may be zero if a

parameter or constant constructor was selected) are promoted to this level, and

the lower table is split across the new coverages of the upper table, ‘‘staying

with’’ the constructors they were previously associated with. extract performs

the operations of splitting and promoting by extracting a list of triples from

the lower coverage: the constructors to be promoted, those not being promoted,

and the attendant entries in the lower table. These are collated by promote to

produce the new inner tables. Collate works by using a list of all promoted

patterns generated by alltus to collect together all the entries in the list of

triples which have the same promoted entry. The list of constructors and code

pairs for a switch is ordered so that the default case always appears at the

end.

isvp is used in the test to see whether we can just return an Eqn or if we need

a complete table: isvp takes a list of patterns (corresponding to an equation

definition), and tests whether any constructors appear as the heads of the

patterns, and if so, returns False. If no constructors appear in any of the

heads, there’s nothing left to switch on, so just return the equation.

gppos is used to get the head of a pattern at a given position.

> genhesf :: typedicts->patts->[(num,posn)]->[posn]->tables->hesf

> genhesf types ps lparms poss (Eqns ks) = Eqn (uniq ks)

> genhesf types ps lparms poss (Table vs)

> = Eqn (uniq allks), conss = [] \/ and [isvp (ps!(k-1)) | k<-allks]

> = Head pw (Switch cases), otherwise

> where

> conss = mkset [c | (cs,e) <- vs; c<-cs; c~=""]

> allks = getcases (Table vs)

> which =

> choosecol (Table vs)

> [and [p~=pn | (e,p)<-lparms; member allks e] | pn<-poss]

> cases =

> order [(c,genhesf types ps lparms (np c) (ns c st)) |

> (c,st)<-split vs which; getcases (Table st) ~= []]

> np c =

> take (which-1) poss ++ [pw++[i] | i<-[1..ar c]] ++ drop which poss

> ns c st = Table (concat [ promote (ar c) cov tab | (cov,tab) <- st])

> promote a cov (Eqns ks) =

> [(take (which-1) cov ++ (rep a "") ++ drop which cov,Eqns ks)]

> promote a cov (Table vs1) =

> collate [(t ++ pc ++ d,trem,e) | (pc,trem,e) <- extract n a vs1 ]

> where
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> t = take (which-1) cov

> d = drop which cov

> n = sum (map ar t)

> extract k a vs1 =

> [(take a (drop k v), take k v ++ drop (k+a) v,e)| (v,e) <- vs1]

> collate ts =

> [(tu1,Table [(tl,e) | (tu,tl,e) <- ts; tu = tu1])| tu1 <- alltus ts]

> alltus ts = mkset [tu | (tu,tl,e) <- ts]

> ar "" = 0

> ar c = arity types c

> pw = poss!(which-1)

> order [] = []

> order [ch] = [ch]

> order ((c,h):ch:rchs)

> = ch:rchs++[(c,h)], c = ""

> = (c,h):order (ch:rchs), otherwise

> isvp p = and [ ~iscons types (gppos (Tree "" p) r) | r<-poss]

> gppos (Tree c as) [] = c

> gppos (Tree c []) ks = c || Handles * case.

> gppos (Tree c as) (k:ks) = gppos (as!(k-1)) ks

choosecol selects a column of a table to switch upon based upon a metric

applied to the separation in cases that will occur were this column to be

switched upon. The list of booleans bs determines which columns may be chosen,

depending on lazy elements in the types. No column may be chosen which has no

interesting constructors.

colmets is a list of metrics, one for each of the columns of the table. The

table is divided up into subtables. Each subtable is in fact the entire

table, but split up into a list of subtables in such a way that in one

particular column in the subtable, only one constructor appears. ncol is the

number of columns in the table.

> choosecol :: tables->[bool]->num

> choosecol (Table vs) bs

> = error "No possible choice", or bs = False

> = hd [ k | (k,m) <- colmets; m = min (map snd colmets)], otherwise

> where

> colmets =

> [(i,metric [ getcases (Table vs1) | (c,vs1) <- cst]) |

> (i,cst)<-subtables]

> subtables =

> [(i,split vs i) | i <- [1..ncol];bs!(i-1) & constrs!(i-1)~=[]]

> ncol = #(fst (hd vs))

> constrs = [filter (~=[]) (mkset l) | l<-transpose [c | (c,t)<-vs]]

split collects all the entries in the table entries vs which have a given

constructor in a given column i together producing a list of

(constructor,entry) pairs. constrs collects the list of constructors which

appear in column i in the table.

> split :: [([ids],tables)]->num->[(ids,[([ids],tables)])]

> split vs i =

> [(c,[(cov,tab) | (cov,tab) <- vs; cov!(i-1) = c]) | c <- constrs]

> where

> constrs = mkset [cov!(i-1) | (cov,tab) <- vs]

metric calculates the relative benefits of choosing one subtable over another.

> metric :: [[num]]->num

> metric [] = 0

> metric ls = sum (map sum ls) / #ls
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getcases is given a table, and returns the list of all the possible equations

which could be selected by the table.

> getcases :: tables->[num]

> getcases (Eqns ks) = ks

> getcases (Table vs) = mkset (concat [ getcases ts | (c,ts) <- vs ])

genpattcode generates G-Code from HESF code. There are four cases. The

arguments passed in are:

hlist -- a list of heap requirements for each of the destination CASE blocks

for the rhs expressions

types -- the type dictionary

funcno -- the unique function id for generating entry points

pm -- map from argument positions to G-Code variables

pd -- current position being switched on

HESF -- the HESF instruction to be executed

eps -- the free entry points to be used

vs -- the variables to be saved on the stack

> genpattcode :: [num]->typedicts->num->maps posn ids->

> posn->hesf->[ids]->[ids]->([gcode],num,num,[ids])

For head evaluation, the existing context and return address to a new

continuation block must first be saved, then the suspension entered, then the

new continuation block must be created, which first stores the address of the

heap node resulting from the evaluation, then recovers the saved context.

Finally, the remaining HESF code is compiled recursively.

> genpattcode hlist types funcno pm pd (Head s c) (ep1:reps) vs =

> (pushes++newblock++pops++rhec,max[#vs+1,rstack],0,reps1)

> where

> pushes = [Push vp | vp <- reverse pvs]

> newblock =

> [Enter cvar,mkdata (#pops+1),Continue ep1,Heap rh,Storenode cvar]

> pops = [Pop vp | vp <- pvs]

> (rhec,rstack,rh,reps1) =

> genpattcode hlist types funcno pm s c reps (mkset (cvar:vs))

> pvs = (ep1:vs)--[cvar]

> cvar = apply pm s

For equations, a simple transfer of control to the appropriate equation entry

point suffices.

> genpattcode hlist types funcno pm pd (Eqn k) eps vs =

> ([Jump (mke funcno k)],0,hlist!(k-1),eps)

For a switch, the current block is finished by adding test-and-switch

instruction groups for each listed constructor. If a default case is

supplied, then this is used as a final default branch, otherwise the error

MISSING CASE is used. A series of blocks is then generated, one for each of

the cases, each consisting of an entry point, recovery of the constructor,

then the arguments in a node, and remaining code corresponding to the

constructor.

> genpattcode hlist types funcno pm pd (Switch chs) eps vs =

> (tries++dcase:cases,mstack,mh,eps1)

> where

> tries = concat [[Try ("_t"++c),Swi ep,Untry ("_t"++c)] |

> ((c,h),ep) <- zip2 chs eps; c ~= ""]

> dcase

> = Jump "misscase", defs = []

> = Jump (hd defs), otherwise

> (cases,mstack,mh,eps1) = gccases (zip2 chs eps) (drop (#chs) eps)
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> defs = [ ep | ((c,h),ep) <- zip2 chs eps; c = ""]

>

> gccases [] eps2 = ([],0,0,eps2)

> gccases (((c,h),e):rchs) eps2 =

> (bcase++chec++rhec,max [cstack,rstack],max [ch,rh],reps), otherwise

> where

> bcase = Case e:Get tmp:gnvs

> nvs

> = [], c= ""

> = [defaultapply tmp pm (pd++[k]) | k<-[1..arity types c]], otherwise

> gnvs = map Get nvs

> (chec,cstack,ch,ceps) =

> genpattcode hlist types funcno pm pd h eps2 (vs++filter (~=tmp) nvs)

> (rhec,rstack,rh,reps) = gccases rchs ceps

> tmp = "_tmp"

genpattcode fails if the HESF code includes the Full Evaluation instruction

(it is never generated by genhesf).

> genpattcode hlist types funcno pm pd (Full s c) eps vs =

> error "Full Evaluation not supported"

geneqncode generates gcode for all the equations, given a list of triples

(entry,expr,vmap) for each of the equations.

> geneqncode :: [ids]->[(ids,trees,maps ids ids)]->[ids]->

> ([gcode],num,[num],[ids])

> geneqncode fvs [] eps = ([],0,[],eps)

> geneqncode fvs ((ep,eq,vmap):eqns) eps =

> (Case ep:code++rcode,max [stack,rstack],hs:hlist,eps2)

> where

> (code,hs,stack,eps1) = geneqn eq vmap fvs eps

> (rcode,rstack,hlist,eps2) = geneqncode fvs eqns eps1

geneqn generates gcode for one equation. The first instruction checks that

there is sufficient heap for this block (the amount is calculated when the

remaining code is generated). Then a list of suspensions is generated and the

values placed on the stack in reverse order. The block is finished by a

transfer instruction, and then blocks to handle each of the suspensions are

generated.

> geneqn :: trees->maps ids ids->[ids]->[ids]->([gcode],num,num,[ids])

> geneqn (Tree f sts) vmap fvs eps =

> (suspensions++jump:closures,hsize,stack,eps2)

> where

> (suspensions,hsize,stack) = gensusp vmap fvs (reverse zse)

> (closures,eps2) = genclos vmap fvs zse (drop (#sts) eps)

> jump

> = Enter (apply vmap f), in f (dom vmap)

> = Jump f, otherwise

> zse = zip2 sts eps

gensusp generates suspensions for arguments to a function call. If the

argument is simply a variable, then this is pushed onto the stack, otherwise

a suspension node is created, filled in with the free variables of the

sub-expression (at least one is required, since each node must be at least

two words long), and then the address of the suspension node is stored on the

stack.

> gensusp :: maps ids ids->[ids]->[(trees,ids)]->([gcode],num,num)

> gensusp vmap fvs [] = ([],0,0)

> gensusp vmap fvs ((s,e):ses)



168 APPENDIX C. CODE GENERATION FOR FLAIR

> = (push:rclos,hsize,stack+1), la = [] & in f (dom vmap)

> = (fill++rclos,hsize+huse,stack+1), otherwise

> where

> (Tree f la) = s

> (rclos,hsize,stack) = gensusp vmap fvs ses

> push = Push (apply vmap f)

> fill =

> New vi:Push vi:Fill e:[Fill (defaultapply e vmap v) | v<-freevars]

> vi = hd fvs

> huse = #freevars+1

> freevars

> = fvars, fvars ~= []

> = [e], otherwise

> where fvars = mkset (free vmap s)

genclos generates code blocks to be used when evaluating a suspension on the

stack. This consists of an opening label, the recovery of any free variables

(it is not necessary to recover a padding variable), and then the code for

the subexpression is generated by recursively calling the function to

generate code for an expression above.

> genclos :: maps ids ids->[ids]->[(trees,ids)]->[ids]->([gcode],[ids])

> genclos vmap fvs [] eps = ([],eps)

> genclos vmap fvs ((s,e):ses) eps

> = genclos vmap fvs ses eps, la = [] & in f (dom vmap)

> = (label++Stack stack:Heap hs:gets++code++rcode,eps2), otherwise

> where

> (Tree f la) = s

> label = [mkdata (#freevars+1),Label e]

> gets = Get e:[Get (apply vmap v) | v<-freevars]

> (code,hs,stack,eps1) = geneqn s vmap fvs eps

> (rcode,eps2) = genclos vmap fvs ses eps1

> freevars = mkset (free vmap s)

xprod calculates the cross product of a list of lists as follows: if

the list is empty, then the result is also empty. If there is one

element, v, in the list, then the result is a list of singleton lists,

one singleton list for each element in the inner list v. If there is

more than one element in the list, v being the first element (a list)

and vs being the list of remaining lists, then a new list of lists is

produced by combining each element in the first list v, with each list

in the cross product of remaining lists vs. The result will be a list

of lists, of length equal to the product of the lengths of the initial

lists, while each result inner list will have length equal to the

length of the original outer list.

> xprod :: [[ids]]->[[ids]]

> xprod [] = []

> xprod [v] = [ [vi] | vi <- v]

> xprod (v:vs) = [ vi:vj | vi<-v ; vj <- xprod vs]

free finds all the free variables in a tree expression. The set of all

free variables is given by (dom vmap)

> free :: maps ids ids->trees->[ids]

> free vmap (Tree f sts)

> = (f:rfree), in f (dom vmap)

> = rfree, otherwise

> where rfree = concat (map (free vmap) sts)

bpmap builds a mapping from path descriptors to gcode variables, permitting

a consistent naming convention throughout the G-Code.
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> bpdmap :: patts->num->maps posn ids

> bpdmap ps nargs =

> listtomap (lp1++lp2)

> where

> lp1 = [(p,mkv (hd p)) | p<-lv; #p = 1]

> lp2 = zip2 [reverse p | p<-lv; #p > 1] [mkv v | v <- [nargs+1..]]

> lv = mkset (bpmap [] ps)

> bpmap m [] = m

> bpmap m (p:rps) =

> bpmap (bp1 m [] 1 p) rps

> where

> bp1 m pd k [] = m

> bp1 m pd k ((Tree v sts):ts) =

> bp1 (bp1 ((k:pd):m) (k:pd) 1 sts) pd (k+1) ts

bvmap builds a mapping from variable names in the patterns to variable names

in G-Code for one equation. This requires the use of the path mapping as

defined above.

> bvmap :: typedicts->maps posn ids->[trees]->maps ids ids

> bvmap types pdmap p =

> listtomap [(v,apply pdmap (reverse pd)) | (v,pd) <- bmap [] [] 1 p]

> where

> bmap m pd k [] = m

> bmap m pd k (t:ts) =

> bmap (bm1 m (k:pd) t) pd (k+1) ts

> bm1 m pd (Tree v sts)

> = bmap m pd 1 sts, iscons types v

> = bmap ((v,pd):m) pd 1 sts, otherwise

mke builds an entry point given a function number and a series number.

mkv builds a G-Code variable given a series number

> mke :: num->num->[char]

> mke f e = "f"++shownum f++"e"++shownum e

> mkv :: num->[char]

> mkv v = "v"++shownum v

> mkdata k = Data k (2^k-2)

The file presel.lit.m contains possible definitions for the functions pre and
sel used in the pattern matching algorithm.

> %include <local/maps>

> %include <local/oldsets>

> %include "fl.lit"

> %include "types.lit"

> %include "tables.lit"

pre performs theoretical preprocessing on the patterns. None is actually done.

sel selects an appropriate equation from the overlaps. This one emulates the

Miranda ‘‘choose the textually first’’ rule.

> pre :: typedicts->patts->patts

> pre types ps = ps

> sel :: tables->tables

> sel (Eqns ks) = Eqns (minl ks)

> sel (Table vs) = Table [ (c,sel t) | (c,t) <- vs]

> minl [] = []

> minl l = [min l]
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The file support.lit.m contains miscellaneous functions used by one or more
of the other files.

uniq returns the element in a singleton list

> uniq :: [*]->*

> uniq [x] = x

odds returns all the odd elements in a list

> odds [] = []

> odds (x:l) = x:evens l

evens returns all the even elements in a list

> evens [] = []

> evens (x:l) = odds l

indent, applied to a number and a list of lines, produces a new list of lines,

each of which is indented by the amount specified by the number.

> indent k ls = [rep k ’ ’++l | l<-ls]

concsp concatenates a list of strings, inserting a space between each pair of

strings.

> concsp [] = ""

> concsp [x] = x

> concsp (x:xs) = x++" "++concsp xs

prstar is used in the display of tables and HESF code to print a star in place

of the empty string (which is used internally).

> prstar "" = "*"

> prstar s = s



Appendix D

Extended Type Algorithms

This appendix contains code for the algorithms described in Chapter 5: the
non-polymorphic unique representation algorithm (see Section 5.5, but without
the type synonym notation); the infinite cycle checker (see Section 5.6); and the
algorithm for generating restrictions to be applied to functions (see Section 5.7).
These are compatible with the parser and code generation algorithms presented
in Appendices B and C. However, an additional example top-level Miranda
script is provided in the file example.lit.m. The test data is still to be found
in the file tdata.lit.m

> %include <local/oldsets>

> %include <local/maps>

> %include "fl.lit"

> %include "ptypes.lit"

> %include "types.lit"

> %include "gcode.lit"

> %include "hesf.lit"

> %include "tables.lit"

> %include "parse.lit"

> %include "pm.lit"

> %include "presel.lit"

> %include "restrict.lit"

> %include "btypes.lit"

> %include "infcycchk.lit"

> %include "tdata.lit.m"

This example generates the test cases for mink: the two tables, generated and

selected, the HESF code, G-Code, and the new set of equations (with

restrictions).

> mink_example =

> showtable tab1 ++

> showtable tab2 ++

> showhesf hec ++

> gcodepr (compile pre sel [f] td) ++

> showeqs (gendisjeq td tab1 tab2 f)

> where

> (fm,td) = parse prog

171
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> f = apply fm "mink"

> ps = [ p | (Tree "=" [Tree f p,e])<-f]

> tab1 = buildtab td [] [1..#ps] ps

> tab2 = sel tab1

> (hec,res) = comppatt pre sel td ps

showeqs is a functions to display a list of equations with restrictions.

> showeqs :: [(exprs,exprs,exprs)]->[char]

> showeqs eqs =

> lay [s l++" = "++s r++" { "++s q++" }" | (l,r,q)<-eqs]

> where s = showexprs

showexprs displays an expression stored as a tree

> showexprs :: exprs->[char]

> showexprs (Tree f []) = f

> showexprs (Tree f as) = "("++f++concat [" "++showexprs a | a<-as]++")"

The file btypes.lit.m contains the unique representation (base type) algorithm.

> %include <local/oldsets>

> %include <local/maps>

> %include "fl.lit"

> %include "types.lit"

> %include "tables.lit"

basetypes is a list of booleans representing a base type, True indicating

positive intersection, and False indicating negative intersection.

ntypes is included solely for the ease of the rest of the algorithm. Each of

the original types is given a new representation. The constructor name is

replaced by its corresponding (name,arity) pair, and each of the type

variables is replaced by a number pointing up the position in the original

list of the type corresponding to that variable.

> basetypes ::= Base [bool]

> ntypes ::= NT ids num [num]

fbasetypes finds all the base types for a given set of original type

definitions. Also provided are mappings of constructors and variables used to

perform the transformations described above. The recursive base types algorithm

is applied to the results of the constant base types algorithm.

> fbasetypes :: typedicts->sets basetypes

> fbasetypes data =

> baser basec

> where

The constructors are split into two lists, constant and non-constant consK

and consC.

> consK = [ (n,Cons k) | (n,Cons k) <- maptolist data; k = 0]

> consC = [ (n,Cons k) | (n,Cons k) <- maptolist data; k ~= 0]

The transformation of types described above is carried out and the result is

placed in nt. srch is used to find the correct number to put in the type.

tns is used to hold the correspondence of number and type name.

> tns = zip2 [0..] [n | (n,PattDef ps) <- maptolist data]

> nt = [ [ NT c (arity data c) [ srch tns t | t<-ts ] |
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> (Simple c ts)<-ps] | (n,PattDef ps) <- maptolist data]

srch runs through the list of types, returning the position of a given

typename in the list.

> srch ((k,n):kns) v

> = k, n = v

> = srch kns v, otherwise

basec is the set of base types which can be determined by examining the

membership of just constant values in the types.

> basec =

> listtoset [Base [member t (NT c k []) | t<-nt] | (c,Cons k) <- consK]

baser applies the recursive base types algorithm to an initial set of base

types. The algorithm has two cases : no new base types could be generated, in

which case the initial set of base types is returned; and some new base types

were generated, in which case this set is used as the argument to a recursive

call to baser.

> baser base

> = base, setsize base = setsize newbase

> = baser newbase, otherwise

> where

lbase is a list of the initial base types, needed for Miranda, which cannot

process a set sequentially.

> lbase = settolist base

newbase is the set of base types formed by merging the newly created base

types with those which already existed.

> newbase = union base extras

extras is the set of newly created base types. It is calculated as follows:

for each non-constant constructor, build up all the patterns of

(constructor,[basetypes]) for which #[basetypes] = arity(constructor). Then,

for each type out of the list, determine whether there is an intersection

with each of these patterns. The result is the set of lists produced by doing

this. The presence of an intersection is determined by applying the twiddle

function to the pattern, together with each element of the type. If any of

these twiddle applications returns True, there is an intersection.

> extras =

> listtoset [ Base [ or [ twiddle (c,v) ti | ti <- t] | t <- nt] |

> (c,Cons k) <- consC; v <- prod k lbase]

twiddle tests whether a pattern represented as (constructor,[basetypes])

intersects with a pattern represented as (constructor,[type numbers]). This

is true if for every corresponding argument pair, the appropriate (determined

from the type number) element of the base type is True.

> twiddle (c,v) (NT c k v1) =

> and [ b!t | (Base b,t) <- zip2 v v1]

> twiddle x y = False

prod creates a k-dimensional cross product of the list of base types as

follows. If k=1, then the result is just a list of singleton lists for each

element of the base types. If k>1, then the result is a list which is the two

dimensional cross product of each element of the list of base types with each



174 APPENDIX D. EXTENDED TYPE ALGORITHMS

element of the k-1-dimensional cross product of the list of base types.

> prod 1 base = [[b] | b <- base]

> prod k base =

> [ b:rbs | b<-base; rbs<-prod (k-1) base]

The file infcycchk.lit.m contains the infinite value cycle checker.

> %include <local/oldsets>

> %include <local/maps>

> %include "fl.lit"

> %include "types.lit"

transitions is a type used to list all the edges in the graph of types. It

contains an initial type, a constructor/argument position pair, and a

destination type.

goals is a type used to represent goals for the search algorithm. It contains

the initial position in each cycle, the next constructor/argument pair to be

tried, the types that will result from this transition, and a boolean

indicating whether an imbalance of bottoms has yet been found.

> transitions ::= Trans ids ids num ids

> goals ::= Goal ids ids ids num ids ids bool

testcycle is the top level function, applied to a type dictionary. It

constructs a list of transitions from the type definitions in the dictionary,

and then calls tcycle to check the cycles. The list of types containing bottom

is also acquired by testing each type to see if the constructor Bottom is

included.

> testcycle :: typedicts->bool

> testcycle g =

> tcycle trs bs

> where

> lg = maptolist g

> trs = ftrans [(t,PattDef ps) | (t,PattDef ps)<- lg]

> bs = [ t | (t,PattDef ps) <- lg; member ps (Simple "Bottom" [])]

ftrans finds all transitions existing in the graph of types. This is the form

which the cycle testing algorithm uses to form new goals from old. The

transitions are found by discarding irrelevant transitions from the complete

list of all transitions.

> ftrans :: [(ids,typedata)]->[transitions]

> ftrans g =

> discard trans

> where

The list of all transitions is found by, for each type, looking at the list of

patterns, and producing one transition from the original type to the argument

type annotated with the constructor and argument position.

> trans = concat (map falltrans g)

> falltrans (t,PattDef ps) =

> [ Trans t c a (args!a) | (Simple c args) <- ps; a <- [0..#args-1]]

The discarding procedure works by repeatedly discarding irrelevant types

until two iterations of the loop produce the same results. If the original

list is finite, this must terminate, since the loop may only continue while

the length of the list is decreasing, and it may only decrease by a finite

amount.

> discard trs
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> = trs2, trs2 = trs

> = discard trs2, otherwise

> where

Two sorts of entries are discarded: Any entry which proposes a transition

into a non-existent type, i.e. one that has an ’nt’ field which is not a ’t’

field for any other transition; and any entry which is inaccessible, i.e. one

that has a ’t’ field which is not an ’nt’ field for any other transition.

> ts = mkset [ t | (Trans t c a nt) <- trs ]

> trs1 = [ Trans t c a nt | (Trans t c a nt) <- trs ; member ts nt]

> rts = mkset [ nt | (Trans t c a nt) <- trs ]

> trs2 = [ Trans t c a nt | (Trans t c a nt) <- trs1 ; member rts t]

tcycle does the work of attempting to distinguish cycles. It takes a list of

transitions and a list of types containing bottom, establishes a list of

possible cycles, and then attempts to investigate these as best it may, by

repeatedly producing new goals.

> tcycle :: [transitions]->[ids]->bool

> tcycle trs bs =

> test initgoals []

> where

The initial list of goals is produced by taking a cross product of all

transitions for which the constructor and argument match, and for which at

least one of the initial types contains bottom, and constructing a goal

consisting of the source types for the transitions, the constructor and

argument position used in both transitions, and the destination types for the

transition, and finally the boolean representing whether or not a bottom

mismatch occurred in the source types.

> initgoals =

> [ Goal t1 t2 c a nt1 nt2 (isb t1 ~= isb t2) |

> (Trans t1 c a nt1) <- trs; (Trans t2 c2 a2 nt2) <- trs;

> c2 = c; a2 = a; isb t1 \/ isb t2; t1 ~= t2]

Test does the loop work in deciding whether or not a goal may cause a problem.

It takes two lists of goals, the first is the goals still to be tried, and the

second is the goals that have been tried. It returns true if no problem cycles

may be found, and false otherwise.

If there are no goals remaining to be tested, this can only be because all

suggested goals have been tried unsuccessfully. Therefore the system contains

no problem cycles. Otherwise, the first goal is removed from the list of goals

still to be tried, and it is tested to see whether it directly represents a

problem cycle (if the current state is the same as the original state, and if a

bottom mismatch has been seen). If so, false is immediately returned.

Otherwise, if the goal has already been seen it is discarded and the remainder

are tried. Otherwise, if the cycles have been completed, and bottom has not

been seen in both cycles, then the goal is added to the seen list, and the

remainder are tried. Finally, in any other case, appropriate new goals are

generated (possibly none) and these are tried in turn, with the current goal

being added to the list of those seen & tried.

> test [] seen = True

> test (goal:goals) seen

> = False, bl = True & t1 = nt1 & t2 = nt2

> = test goals seen, member seen goal

> = test goals (goal:seen), t1 = nt1 & t2 = nt2

> = test (newgoals++goals) (goal:seen), otherwise
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> where

The list of goals to be added in the default case is generated as follows: all

the transitions are found which have a source type equal to that of the current

state for each cycle (two lists of transitions), for each of these transitions,

the constructors and the argument positions must match. The new goal consists

of the same final destination types, the new matching constructor and argument

position information, and the destination for each of the transitions, together

with whether or not a bottom mismatch has been seen yet.

> (Goal t1 t2 c a nt1 nt2 bl) = goal

> newgoals =

> [ Goal t1 t2 ac aa ant bnt (bl \/ (isb ant ~= isb bnt)) |

> (Trans at ac aa ant) <- trs; nt1 = at;

> (Trans bt bc ba bnt) <- trs; nt2 = bt;

> ac = bc; aa = ba]

isb is a function to determine whether or not bottom is in a particular type.

> isb = member bs

The file restrict.lit.m generates disjoint equations from a function definition.

> %include <local/oldsets>

> %include <local/maps>

> %include "fl.lit"

> %include "types.lit"

> %include "tables.lit"

> %include "support.lit"

gendisjeq takes, along with a type dictionary, the generated and selected

tables for a function (as constructed by buildtab), and the function definition

(as a list of cases) and produces a list of triples, which consist of

(left,right,restr) for the function. These are the ‘‘true equations’’

associated with the definition of the functions.

genrestr assists in the construction of these equations by first finding the

‘‘exceptions’’ -- the places where there is an equation entry in the generated

table which is not in the selected table -- and then converting these into

expressions using the ~match operator, and combining such expressions using a

conjunction of disjunctions.

excepts is the list of exceptions in table2 compared to table1, arranged by

equations. The result of getexc is offset from one, not zero, so must be

adjusted by dropping the first element, and may lack elements at the end for

equations with no restrictions, so an infinite amount of ‘‘no restrictions’’

are added to the end of the exceptions.

restr contains the restrictions as a list of lists of expressions involving

~match. The only remaining task (performed by mkrestr) is to convert this into

a single expression represented as a conjunction of disjunctions.

> gendisjeq :: typedicts->tables->tables->functions->[(exprs,exprs,exprs)]

> gendisjeq types tab1 tab2 func =

> [(l,r,re) | (Tree "=" [l,r],re) <- zip2 func restr]

> where

> ps = [ p | (Tree "=" [Tree f p,e]) <- func]

> restr = genrestr types tab1 tab2 ps

> genrestr :: typedicts->tables->tables->[[exprs]]->[exprs]
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> genrestr types tab1 tab2 ps =

> map mkrestr restr

> where

> restr =

> [[concat[finddiff types p1 c1 | (p1,c1)<-zip2 pt c] |

> (Tree "@" c) <- ct] | (pt,ct) <- zip2 ps excepts]

> excepts = tl (getexc types tab1 tab2 ++ repeat [])

getexc finds the exception values by comparing the tables tab1 and tab2 to

see where equations have been eliminated in tab2 from tab1. It is guaranteed

that both tables have the same structure (tested by comppatt), and so the

only difference is when a table is of the form (Eqn ks), the ks is tab2 is a

sublist of that in tab1 (though not necessarily a proper sublist). These

differences are found by findsub, converts the nested contexts into tree-shaped

values, and groups them by equation number.

> getexc :: typedicts->tables->tables->[[trees]]

> getexc types tab1 tab2 =

> groupr [(es,cvtree types vs) | (es,vs) <- findsub [] tab1 tab2; vs ~= []]

cvtree converts a value represented by a history of contexts (as generated by

findsub) into a more normal tree-structured value. It is assumed that any

contexts passed in are non-empty. The context consists of a list of lists of

constructors -- each constructor in each list is applied to the correct arity

number of arguments from the next list. The job (performed by cv1) is to find

the tree belonging to the first constructor of the first list, and then to

repeat recursively, deleting the constructed elements as it goes. The eventual

result will be a list of trees (one element for each constructor in the first

list) and a list of empty lists (the remaining elements).

> cvtree :: typedicts->[[ids]]->trees

> cvtree types l =

> Tree "@" trees

> where

> (trees,reml) = cv1 (#(hd l)) l

> cv1 0 l = ([],l)

> cv1 k ((x:rxs):rys) =

> (Tree x v:y,z)

> where

> (v,w) = cv1 (arity types x) rys

> (y,z) = cv1 (k-1) (rxs:w)

groupr groups the list of (equations,restriction) pairs to form a list (per

equation) of lists (per restriction) of expressions (restrictions). It does

this by moving through the list of pairs, and for each one placing the

restriction on the front of a list of restrictions for each of the equations

for which the restriction applies.

> groupr :: [([num],*)]->[[*]]

> groupr [] = []

> groupr ((es,r):rers) =

> gr1 (groupr rers) es

> where

> gr1 sr [] = sr

> gr1 sr (eq:reqs) =

> gr1 (place sr eq) reqs

> place l k

> = take k l ++ [r:(l!k)] ++ drop (k+1) l, k < #l

> = l ++ (rep (k-#l) []) ++ [[r]], otherwise

findsub recursively finds elements of tab1 which have been eliminated from

tab2. As it finds them, it records which equations are affected, and the
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value concerned. This is deduced by looking at the list of coverages formed

by each recursive step of the algorithm. Since the tables are guaranteed

structurally identical, c1 = c2 in the recursive case, and the two are

interchangeable.

> findsub :: [[ids]]->tables->tables->[([num],[[ids]])]

> findsub h (Eqns ks1) (Eqns ks2)

> = [], ks1 = ks2

> = [(ks1--ks2,reverse h)], otherwise

> findsub h (Table vs1) (Table vs2) =

> concat [findsub (c1:h) v1 v2 | ((c1,v1),(c2,v2)) <- zip2 vs1 vs2]

finddiff examines a pattern together with an ‘‘exception value’’ to see how

they compare: it is looking for instances where there is a variable in the

pattern which matches part of the exception value: the restriction is that this

variable is not permitted to match this value.

> finddiff :: typedicts->trees->trees->[trees]

> finddiff types (Tree pc pas) (Tree cc cas)

> = [Tree "~match" [Tree pc pas, Tree cc cas]], ~ iscons types pc

> = concat [finddiff types pt ct | (pt,ct) <- zip2 pas cas], pc = cc

> = error "can’t happen in finddiff", otherwise

mkrestr forms the conjunction of disjunctions required by genrestr.

> mkrestr :: [[exprs]]->exprs

> mkrestr res =

> mkconj res

> where

> mkconj [] = Tree "True" []

> mkconj l = foldl1 conj (map mkdisj l)

> mkdisj [] = Tree "True" []

> mkdisj l = foldl1 disj l

> conj e1 e2 = Tree "&" [e1,e2]

> disj e1 e2 = Tree "|" [e1,e2]



Appendix E

Interpreter for G-Code

This Appendix gives source code in the C programming language for a small
interpreter (under 400 lines, including comments) for the G Code presented
in Chapter 3. This interpreter has been successfully compiled on a Sun 3/50
workstation, and on an IBM PC compatible, and has executed a number of
programs, including the test program given in Appendix B.

/******************************************************************************

A FUNCTIONAL LANGUAGE INTERPRETER. This interpreter loads and runs programs

written in G-Machine Assembly Language. It is intended to demonstrate the

‘spineless tagless g-machine’ approach to functional language compilation.

It is written in C, but uses simple integer techniques only, to avoid type

problems and to allow it to be converted easily into other languages.

Everything is held in a single integer array ‘mem’. The integers are used

both as raw data and as ‘pointers’, i.e. indexes into the array itself. The

code is loaded into the beginning of the array, using a symbol table built at

the end of the array. During execution, the heap works upwards from the code,

and the stack works downwards from the symbol table.

******************************************************************************/

#include <stdio.h>

int mem[10000];

int startmem=0, code, heap, heaplim, stacklim, stack, syms, endmem=10000;

int pc, node, tag, acc;

enum opcodes {

FUNCTION, LABEL, CONTINUE, CASE, DATA, HEAP, STACK, ARGS,

PUSH, POP, PUT, GET, SAVENODE, SETNODE, NEW, FILL,

LOAD, STORE, ADD, SUBTRACT, MULTIPLY, DIVIDE, COMPARE,

READ, WRITE, JUMP, ENTER, RETURN, SWITCH, TRY, UNTRY, STOP

};

char *opnames[] = {

"FUNCTION","LABEL","CONTINUE","CASE","data","heap","stack","args",

"push","pop","put","get","savenode","setnode","new","fill",

"load","store","add","subtract","multiply","divide","compare",

"read","write","jump","enter","return","switch","try","untry","stop"

};

main(argc,argv)

char **argv;

{

FILE *program;
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if (argc != 2) { printf("Wrong no. of args\n"); exit(1); }

program = fopen(argv[1],"r");

if (program == NULL) { printf("Can’t open program file\n"); exit(1); }

load(program);

run();

}

/******************************************************************************

THE LOADER. The ‘load’ procedure first initialises the symbol table by

entering the operation symbols, then it loads in a program file. All symbols

in the program are assumed to be distinct. The value of an operation symbol is

its opcode, of an entry point is its address in the code, and of an integer

constant is the corresponding integer. Other symbols are assumed to be local

variables whose values are left undefined.

Each operation is on one line, and has one argument. Multiple arguments are

an abbreviation for repeating the operation on each argument in turn. Blank

lines, and everything on a line after the ‘|’ symbol, are comments. The loader

imposes arbitrary restrictions on the sizes of various things.

******************************************************************************/

load(program)

FILE *program;

{

char name[50], line[80], s[6][20];

int op, sym, i, n;

syms = endmem;

for (op=FUNCTION; op<=STOP; op++) {

sym = lookup(opnames[op]);

mem[sym] = op;

}

code = startmem;

while (fgets(line,80,program) != NULL) {

n = sscanf(line,"%s%s%s%s%s%s",s[0],s[1],s[2],s[3],s[4],s[5]);

for (i=0; i<n; i++) if (strcmp(s[i],"|") == 0) n = i;

if (n==0) continue;

op = mem[lookup(s[0])];

for(i=1; i<n; i++) {

sym = lookup(s[i]);

mem[code++] = op;

mem[code++] = sym;

if (op <= CASE) mem[sym] = code;

if ((s[i][0] >= ’0’)&&(s[i][0] <= ’9’)) sscanf(s[i],"%d",&mem[sym]);

}

}

}

/******************************************************************************

THE SYMBOL TABLE. The ‘lookup’ procedure looks a name up in the symbol table,

and returns the corresponding entry, creating a new entry if necessary. Each

entry in the table consists of a word holding the value, followed by the number

of characters in the name, followed by the name itself, one character per word.

******************************************************************************/

lookup(name)

char *name;

{

int sym, i, len;

len = strlen(name);

for (sym = syms; sym < endmem; sym = sym + 2 + mem[sym+1]) {
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if (mem[sym+1] != len) continue;

for (i=0; i<len; i++) if (name[i] != mem[sym+2+i]) break;

if (i==len) return sym;

}

syms = syms - len - 2;

mem[syms+1] = len;

for (i=0; i<len; i++) mem[syms+2+i] = name[i];

return syms;

}

/******************************************************************************

EXECUTION. The ‘run’ procedure executes the code. Each op has one argument

which is a pointer to the value word of a symbol table entry. This allows us to

have only one addressing mode.

******************************************************************************/

run()

{

int op, arg, val, i, steps;

pc = mem[lookup("result")];

stack = syms; stacklim = stack - 500;

heap = code; heaplim = stacklim - 200;

steps = 0;

while (1) {

steps++;

op = mem[pc++]; arg = mem[pc++]; val = mem[arg];

switch (op) {

case HEAP: if (heap + val > heaplim) checkheap(val); break;

case STACK: if (stack - val < stacklim) checkstack(val); break;

case ARGS: for (i=0;i<val;i++) if (mem[stack+i]<code) checkargs(val); break;

case PUSH: mem[--stack] = val; break;

case POP: mem[arg] = mem[stack++]; break;

case PUT: mem[node++] = val; break;

case GET: mem[arg] = mem[node++]; break;

case SAVENODE:mem[arg] = node; break;

case SETNODE: node = val; break;

case NEW: mem[arg] = heap; break;

case FILL: mem[heap++] = val; break;

case LOAD: acc = val; break;

case STORE: mem[arg] = acc; break;

case ADD: acc = acc + val; break;

case SUBTRACT:acc = acc - val; break;

case MULTIPLY:acc = acc * val; break;

case DIVIDE: acc = acc / val; break;

case COMPARE: tag = (acc < val) ? 0 : (acc == val) ? 1 : 2; break;

case READ: mem[arg] = getchar(); tag = (mem[arg] == EOF) ? 0 : 1; break;

case WRITE: printf("%c",val); break;

case JUMP: pc = val; break;

case ENTER: node = val; pc = mem[node]; break;

case RETURN: tag = val; pc = mem[stack]; break;

case SWITCH: if (tag==0) pc=val; else tag--; break;

case TRY: tag-=val; break;

case UNTRY: tag+=val+1; break;

case STOP: exit(val);

default: printf("Error : %d steps -> ",steps); printop(pc-2); exit(1);

}

}

}

/******************************************************************************

CHECKING. These procedures check for sufficient heap space, stack space, or
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function arguments. In the first two cases the collector is called, and in the

third, a partial application node is created.

Heap checks can happen at FUNCTION, LABEL, and RETURN entry points, stack

checks at FUNCTIONs or LABELs, and argument checks at FUNCTIONs only.

******************************************************************************/

checkheap(n)

{

int entry;

if (heap + n <= heaplim) return;

entry = pc;

while (mem[entry] > CASE) entry = entry - 2;

if (mem[entry] != FUNCTION) mem[--stack] = node;

collect();

if (mem[entry] != FUNCTION) node = mem[stack++];

if (heap + n > heaplim) { printf("No heap\n"); exit(1); }

}

checkstack(n)

{

int entry;

if (stack - n >= stacklim) return;

entry = pc;

while (mem[entry] > CASE) entry = entry - 2;

if (mem[entry] != FUNCTION) mem[--stack] = node;

collect();

if (mem[entry] != FUNCTION) node = mem[stack++];

if (stack - n < stacklim) { printf("No stack\n"); exit(1); }

}

char *applylabels[] = {"Apply0", "Apply1", "Apply2"};

checkargs(n)

{

int i, fun;

for (i=0; i<n; i++) if (mem[stack+i]<code) break;

if (i == n) return;

if (i > 2) {printf("Long apply\n"); exit(1);}

fun = pc;

while (mem[fun-2] != FUNCTION) fun = fun - 2;

node = heap;

mem[heap++] = mem[lookup(applylabels[i])];

mem[heap++] = fun;

while (i--) mem[heap++] = mem[stack++];

tag = 0; pc = mem[stack];

}

/******************************************************************************

THE GARBAGE COLLECTOR. This removes dead nodes from the heap, compacting the

remaining live ones. On entry to the garbage collector, the following

conditions must hold.

1) The heap must consist entirely of valid nodes, so that the collector can

scan the heap correctly. Thus if a node is overwritten with a shorter one,

the left-over words must be filled with one-word nodes (e.g. Nil).

2) All current pointers to heap nodes must be on the stack. The collector uses

these pointers to find the live nodes, and then updates them when the nodes

are moved. This means the node register must be pushed on the stack if it
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is valid (LABEL & RETURN), and the stack frame must be intact (RETURN).

The first pass of the collector finds all the live nodes by following pointers.

At the same time, all the references found to a live node are threaded onto a

chain stored in place of the node’s label. The chain is terminated by the

original label, which can be distinguished because it is a pointer into the

code rather than the heap. During the first pass, nodes which have been

visited but whose references have not been scanned are kept on the stack (using

the space reserved between the heap and stack limits).

During the second pass, the heap is scanned, and all the references to a

live node are made to point to its new location -- where it will be after

compaction. The node itself is not moved (since the references in it may need

updating later in the pass). A live node can be detected during the scan

because it has a reference chain in place of a label. Its new location can be

calculated from the space taken up by live nodes found before it. Dead nodes

are marked with negative numbers in place of labels.

During the third pass, the nodes are moved to their new locations.

******************************************************************************/

thread(ref) /* Thread a reference to a node onto its chain. */

{ /* If the node hasn’t been visited before, */

int node; /* put it on the stack for later scanning. */

node = mem[ref];

if (mem[node] < code) {

if (stack <= heaplim) { printf("No GC stack\n"); exit(1); }

mem[--stack] = node;

}

mem[ref] = mem[node];

mem[node] = ref;

}

scan(node) /* Scan a node (or stack frame) to deal with its */

{ /* references. Find its label, and from that its */

int lab, size, layout; /* size and layout (position of references). */

lab = mem[node];

while (lab >= code) lab = mem[lab];

size = mem[mem[lab-5]]; layout = mem[mem[lab-3]];

while (layout != 0) {

if (layout & 1) thread(node);

node = node + 1; layout = layout >> 1;

}

return size;

}

collect() /* Perform garbage collection and compaction. */

{

int oldstack, p, ref, lab, size, new;

printf("GC1"); fflush(stdout);

oldstack = stack; /* Visit all live nodes, thread */

for (p = oldstack; p < syms; ) { /* all references onto chains. */

if (mem[p] < code) p = p + scan(p);

else thread(p++);

}

while (stack < oldstack) scan(mem[stack++]);

printf("\b2"); fflush(stdout);

new = code;

for (p = code; p < heap; p = p + size) {

lab = mem[p];
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if (lab < code) { /* If node is dead, mark a gap. */

size = mem[mem[lab-5]]; /* This could be improved by */

mem[p] = -size; /* marking groups of dead nodes.*/

} else {

while(lab >= code) { /* Find new locations of live */

ref = lab; /* nodes & update references. */

lab = mem[ref];

mem[ref] = new;

}

mem[p] = lab; /* Restore original label. */

size = mem[mem[lab-5]];

new = new + size;

}

}

printf("\b3"); fflush(stdout);

new = code; /* Move all live nodes to their */

for (p = code; p < heap; ) { /* new locations. */

lab = mem[p];

if (lab < 0) {

p = p + (-lab);

} else {

size = mem[mem[lab-5]];

while (size--) mem[new++] = mem[p++];

}

}

heap = new;

printf("\b\b\b"); fflush(stdout);

}

/******************************************************************************

DEBUGGING PROCEDURES. Procedures for printing the symbol table, the

loaded code, a single operation, a single symbol or a heap node.

******************************************************************************/

printtable()

{

int i,sym;

for (sym = syms; sym < endmem; sym += 2+mem[sym+1]) {

for (i=0; i<mem[sym+1]; i++) fprintf(stderr,"%c",mem[sym+2+i]);

fprintf(stderr," %d\n",mem[sym]);

}

}

printcode()

{

int i;

for (i=0; i<code; i++) {

if (i%10 == 0) fprintf(stderr,"\n%d: ",i);

fprintf(stderr,"%d ",mem[i]);

}

fprintf(stderr,"finished\n\n");

}

printop(pc)

{

int i,arg,opcode;

fprintf(stderr,"%d: ",pc);

opcode = mem[pc];

if ((opcode >= 0)&&(opcode <= STOP)) fprintf(stderr,"%s ",opnames[opcode]);

else fprintf(stderr,"%d ",opcode);
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arg = mem[pc+1];

if ((arg >= syms)&&(arg <= endmem)) printsym(arg);

else fprintf(stderr,"%d",arg);

fprintf(stderr," %d",mem[arg]);

fprintf(stderr,"\n");

}

printsym(sym)

{

int i;

for(i=0;i<mem[sym+1];i++)

fprintf(stderr,"%c",mem[sym+2+i]);

}

printnode(node)

{

int lab, size, layout, i;

fprintf(stderr,"p%d: ",node);

lab = mem[node];

while (lab >= code) lab = mem[lab];

printsym(mem[lab-1]);

size = mem[mem[lab-5]]; layout = mem[mem[lab-3]];

for (i=1; i<size; i++) {

if (((layout>>i)&1)) fprintf(stderr," p"); else fprintf(stderr," ");

fprintf(stderr,"%d",mem[node+i]);

}

fprintf(stderr,"\n");

}


